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ABSTRACT

Granular dynamics simulations provide insights to the con-
tact-scale physics of loose sediments. However, simulations
using identical spherical grains do not reflect characteristics
observed in natural sediments, such as pack sorting, grading,
grain sphericity, and grain roundness. We have developed
software to create 3D grain packs of a range of regular and
irregular shapes with geologically realistic variations in sort-
ing and grading. An efficient approach is used to create multi-
ple realizations of nonspherical irregularly shaped grains
using coherent noise modification of the spherical grain sur-
face. The discrete-element method is used to assemble the
grain pack with different depositional styles by letting grains
fall under the influence of gravity. Characterization of various
parameters of random loose and dense grain packs, and com-
parison with previous studies, helps to establish the validity,
flexibility, and consistency of the simulator. The output of this
software is a digital grain pack, including metadata such as
contacts and coordinates, that can be studied further using
other analysis tools, e.g., by conducting fluid flow, mechani-
cal, or electrical simulations.

INTRODUCTION

Studies on granular media are essential for understanding a wide
range of physical phenomena in sediments including flow, stress and
strain, heat conduction, and electrical effects. Granular media are
ubiquitous and play an important role in industry, mining, and geo-
physics. Particularly in geophysics, the study of granular media is
important because the physical properties of the grains and their ar-

rangement, orientation, and size affect several processes and
properties such as the (1) effective elastic moduli, which control seis-
mic wave propagation (e.g., Paterson, 1956; Sain et al., 2016),
(2) rock porosity and permeability, which control fluid flow (e.g.,
Yin and Nur, 1993; Diyokeugwu andGlover, 2018), and (3) electrical
current transport, which controls effective electrical conductivity
(e.g., Guo et al., 2018). For example, Sain et al. (2016) conclude that
effective-medium theory models traditionally used in geophysics fail
to predict the stress-dependent elastic properties of granular media
because they do not account for the heterogeneous distribution of
contacts and stress heterogeneity observed in simulated grain packs.
Yin and Nur (1993), using experiments on unconsolidated clean Ot-
tawa sand mixed with clay, find that permeability is affected by clay
content weight percentage, whereas the percentage is less than a cer-
tain clay-content threshold, named critical clay-content. Guo et al.
(2018) conclude from finite-element simulations that the effective
permittivity of a rock responds differently to changes in pore-size
variation, shape variation, distribution, and arrangement. The exam-
ples above use the physical experiments and numerical simulation,
each with its own advantages and disadvantages.
Natural granular media are heterogeneous and pose a challenge for

systematically isolating the effects of individual factors (e.g., sphe-
ricity, roughness, or sorting) on the physical properties of the granular
media. To overcome these limitations, physical experiments using
synthetic grain packs have also been used in the past (e.g., Bernal,
1959, Scott, 1962; Finney, 1970; Fu and Dekelbab, 2003; Knackstedt
et al., 2009). Rare data sets are available to the scientific community
such as the Finney (1970) pack. Although the results are very useful,
conducting such experiments to generate realistic grain pack is time
consuming and expensive. In addition, incorporating different grain
shapes in a systematic manner is difficult.
Numerical discrete element simulation has been a very useful tool

to study granular media. Most often numerical simulations work with
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spherical or other regular grain shapes. Extensions to irregular natural
grain shapes can be computationally challenging. As described later,
one of the challenges is to keep track of contacts for irregular grain
shapes. However, with advances in contact simulation theory, com-
puter science, and hardware acceleration, numerical simulations can
now be used to generate a range of digital grain packs efficiently. This
is done by modeling the granular media as a random packing of dis-
crete grains, most commonly spheres. These grain packs have specific
characteristics that can be systemically studied, such as void fraction
or porosity, permeability, and pore body and throat-size distributions.
We introduce software for generating 3D grain packs. The software

is flexible enough to generate a variety of grain packs with different
grain shapes, grain-size distributions, and grading. To accomplish
this, we introduce an efficient numerical approach to create non-
spherical irregularly shaped grains using the coherent noise modifi-
cation of an underlying regularly shaped grain surface. The various
granular packs of grains with prescribed shape and size distributions
are modeled and compared with numerical and experimental mea-
surements. The approach outlined (1) satisfies the dynamic stability
constraint under gravity, (2) has the ability to handle grain-size dis-
tributions, (3) creates regular and irregularly shaped grains, (4) allows
for multiple grain types at the same time, (5) deposits grains using
multiple scenarios (e.g., random, fining upward, coarsening upward),
and (6) has the ability to create loose and dense packs.
In this paper, we first present the relevant previous work. Next, we

summarize the discrete-element method framework used. Afterward,
we introduce the new method to generate nonspherical grains and the
workflow to produce the grain packs. Finally, we validate the work-
flow by showing some examples of generated grain packs and study-
ing their corresponding characteristics. The output of this method can
be used as an input for other simulations and studies, such as in flow,
stress, and wave-propagation studies (García et al., 2004; García and
Medina, 2006; Sain, 2010; Sain et al., 2014; O’Donovan et al., 2016).
An example of using this software for studying the influence of
irregular shape and size on porosity, permeability, and elastic proper-
ties of granular media is found in Kerimov et al. (2018).

BACKGROUND INFORMATION

Numerical simulation of granular media

Numerical simulations of granular media can be categorized
broadly into two types: geometric and dynamic. Geometric methods,
which rely on a set of relatively simple geometric rules, can quickly
assemble packs of large number of grains (Jerier et al., 2010). For
example, Jodrey and Tory (1985) simulate a monodisperse spherical
pack from a random distribution of sphere centers by converging to a
solution that eliminates overlap while minimizing the outer diameter
of the pack. In a ballistic deposition algorithm (Aparicio and Cocks,
1995; Jullien and Meakin, 2000; Nurkanov et al., 2001), the spheres
are added one by one in a geometrically stable position at the surface
of an evenly packed set of spheres. The primary advantage of geo-
metric methods is reduced computational time; a grain pack of
10,000 spherical grains can be created in a few minutes (Jerier et al.,
2010). However, these geometrically generated numerical grain packs
are commonly mechanically unstable and have no information on the
contact forces between the grains in contact (Jerier et al., 2010).
Dynamic methods, based on the discrete element method (DEM)

(Cundall and Strack, 1979), are used to computationally assemble
packs of grains based on physical forces. They are commonly used

to study concretes (Magnier and Donzé, 1998; Camborde et al., 2000;
Monteiro Azevedo et al., 2008), ceramics (Tan et al., 2009), powders
(Martin et al., 2003; Martin, 2004), and soils (Richefeu et al., 2006;
Donzé et al., 2009; Sain, 2010). These dynamic methods can repro-
duce the grain-pack properties (Liu and Yuan, 2000; Yang et al.,
2000), but are computationally more expensive than geometric meth-
ods. Different dynamic methods have been published. For example,
Liu and Yuan (2000) and Sain (2010) generate grain packs based on
an isotropic compression method, where nonoverlapping spheres are
positioned and compressed to the prescribed stress. Lubachevsky and
Stillinger (1990), Stillinger and Lubachevsky (1993), andKansal et al.
(2002) use an iterative growth algorithm to grow spheres and disks
from an initial random configuration and grain velocities. Donev et al.
(2005a, 2005b) and Bannerman et al. (2011) use the event-driven
molecular-dynamics approach that is based on the simulation of
series of grain collisions (events) by predicting their occurrence in
the future from current grains trajectories. This event-based approach
can be computationally efficient because time stepping is discontinu-
ous between and during events.

Grain shapes

Many published studied related to 3D DEM modeling of granular
media are based on spherical grains, which makes the contact detec-
tion and force calculation relatively easy compared with any other
shape (e.g., Liu and Yuan, 2000; Fu and Dekelbab, 2003; Jiang et al.,
2003; Bagi, 2005). Jin et al. (2003) use DEM to numerically generate
grain packs of spherical grains with a prescribed grain-size distribu-
tion and model the effect of compaction by applying a vertical stress
and allowing overlap of the spherical grains. The random loose and
dense monodisperse sphere grain packs have been extensively stud-
ied in experiments and simulations, which typically have a maximal
porosity of approximately 0.40 (Dullien, 1991) and 0.36 (Baule and
Makse, 2014), respectively. However, grains with irregular shapes are
ubiquitous in nature and in many industries involved in granular
processing. Theoretical or numerical modeling of grain packs with
nonspherical grains is a difficult problem due to the shape, position,
and orientation of these grains (Baule and Makse, 2014). Recent
works have focused on grain packs of nonspherical regularly shaped
grains, such as ellipsoids (Lin and Ng, 1997; Mustoe and Miyata,
2001), disks (Stillinger and Lubachevsky, 1993), tetrahedrons (Zhao
et al., 2015), and polyhedrons (Hart et al., 1988; Abou-Chakra et al.,
2004). There is still a need for rigorous simulation and analysis of
grain packs consisting of nonspherical irregularly shaped grains be-
cause studies have shown that the grain packs’ physical properties,
such as porosity, permeability, and the elastic bulk modulus are de-
pendent on the morphological characteristics of the constituent grains
(Latham and Munjiza, 2004; Kerimov et al., 2018).
A popular approach to approximate irregular grain shapes is to

use multispheres. The approach is based on clumps, clusters, or
clouds of overlapping or nonoverlapping small spheres to represent
the large nonspherical irregular shape grain, in which internal con-
tacts are ignored and the cluster behaves as a rigid body (Matsush-
ima et al., 2003; Price et al., 2007; Wang et al., 2007; García et al.,
2009; Gao et al., 2012). Matsushima et al. (2003) fill the volume of
a nonspherical grain with a cluster of overlapping spheres. Their
method randomly generates small spheres of different sizes inside
the nonspherical grain volume. The spheres are then optimized by
moving and expanding or shrinking the small spheres using virtual
forces to make them fit optimally within the boundaries of the non-
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spherical grain. Unfortunately, the convergence criterion of this
problem significantly depends on initial random locations of the
small overlapping spheres and virtual force magnitude. Price et al.
(2007) also use small spheres to optimally fit the volume of non-
spherical grains. They fill the volume of the nonspherical grain by
repeatedly generating a sphere through four random points chosen
on the surface of the grain. The process is optimized by expanding
or shrinking the spheres via local minimization of the distance be-
tween the spheres and the surface of the nonspherical grain. The op-
timization technique is extremely efficient when the four random
points were selected locally in the same area of the grain. The opti-
mization and grain assembly make the approach computationally ex-
pensive and not easily applicable to numerical grain packs of large
number of grains with different shapes and sizes. Wang et al. (2007)
propose a clustering approach in which the volume of the nonspheri-
cal grain is filled with a regular structural arrangement of small non-
overlapping spherical grains, followed by replacing the agglomerate
of adjacent small spherical grains with a large one to reduce the com-
putational time. The main disadvantage of this approach is that the
rough surface of the produced nonspherical grain that might be not
representative of the surface of granular grains. García et al. (2009)
incorporate overlapping spheres to achieve an acceptable representa-
tion of irregular grains using minimum number of spheres.
Other approaches for generating irregular grain packs exist that are

not based on the multisphere. For example, Latham et al. (2001) sim-
ulate loose packs of tetrahedra by a random positioning step followed
by an overlap removal step. Latham and Munjiza (2004) compare
cube-packing experiments with simulation results obtained using
the finite-element method and DEM. Lee et al. (2009) represent
grains as a set of intersecting half-spaces to create polyhedrons. Tah-
masebi et al. (2017), Tahmasebi and Sahimi (2018), and Tahmasebi
(2018) use an image-based Markov process to construct different
realizations of granular media from X-ray scanned grains.

NUMERICAL METHOD AND PROCEDURES

In this section, we provide (1) a general description of the DEM
method used in this study, (2) a new efficient numerical approach to
create nonspherical irregularly shaped grains using coherent noise
modification of the spherical grain surface, and (3) the workflow to
assemble 3D loose and dense grain packs.

Numerical framework

The DEM is a powerful method to simulate the
interactions between discrete objects (Cundall and
Strack, 1979; Pöschel and Schwager, 2005), in-
cluding irregularly shaped (Matuttis and Chen,
2014) objects. DEM methods model the individ-
ual grain collisions, where each grain collision
must satisfy the conservation laws for linear
and angular momentum. There are three essential
elements in DEM: contact detection, contact res-
olution, and time-step integration. In this study,
the PhysX solver is used, which is implemented
in the Unity3D development platform (Unity
Technologies, 2017), to simulate grain packs with
spherical and nonspherical shapes under the influ-
ence of gravitational forces. The PhysX solver
was created for real-time physics calculations;

therefore, there is a trade-off between computational efficiency, flex-
ibility, and accuracy (Messmer, 2014). In particular, the current solver
is not accurate when dealing with fast angular velocities, or collisions
with very high mass ratios if a small number of solver iterations is
used (Storey et al., 2018). Other solvers prefer accuracy over effi-
ciency and flexibility, such as LIGGHTS (Kloss et al., 2012) and
ChronoEngine (Tasora and Negrut, 2016). Advantages of real-time
physics solvers are being recognized in the scientific community and
are being used for specific scenarios related to earth science that de-
mand efficiency over extreme accuracy (e.g., Longshaw et al., 2010;
Longshaw, 2011). For natural sediments, we often have to simulate
multiple grain packs with stochastic variations to draw meaningful
statistical correlations. For such applications, real-time physics solv-
ers are very efficient.

Contact detection

The collision is handled in two phases: (1) broad-phase and
(2) narrow-phase. Broad-phase collision detection approximates the
shape of the grains by its referential axis-aligned bounding box and
detects overlapping boxes. The implemented algorithms used to do
this are sweep and prune and multibox pruning (based on Terdiman,
2001). The narrow-phase collision detection algorithm is only ap-
plied on object pairs that were detected in the broad phase. In this
phase, the exact point contacts are identified as well as the penetra-
tion depth. Parallelization of the problem by grouping different
grains, a.k.a. island generation, is another modification that is
implemented to decrease the processing time (Tonge et al., 2012).
The grouping introduces a slightly nondeterministic solution be-
cause the grouping might be different depending on the number
of grains in the simulation (Storey, 2017). To improve collision
detection of fast-moving objects, continuous collision detection at-
tempts to predict the possible collisions before they occur and in-
forms the numerical integrator.

Contact resolution

PhysX uses an impulse-based solver (e.g., Hahn, 1988; Mirtich,
1996). Figure 1 shows the general procedures to update a grain’s
position and velocity based on an external impulse. The velocity
is calculated along the contact normal. The impulse is calculated
such that the relative velocity is zero and then converted into the
rigid body coordinates. The calculated impulse is then applied to the
rigid body velocity, and the position is updated using this velocity.

Figure 1. Schematic of grain velocity and position update subjected to external forces
(modified after Tonge, 2012).
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The rigid body contact model and discretization used have been
described in Anitescu and Potra (1997) as well as Tonge et al.
(2012). A brief summary is provided here. Consider n rigid bodies
with positions/rotation x̄ ∈ R6n, external forces (such as gravity)
and torques f̄e ∈ R6n, and masses/rotation inertia ¯̄M ∈ R6n×6n.
The collision detection identifies the m contacts between rigid
bodies, represented by contact constraints ϕðxÞ ≥ 0, where ϕðxÞ
is a continuous differentiable function of the position vector. The
Jacobian ( ¯̄J ∈ Rm×6n) is thus defined as ∂ϕ∕∂x. The fundamental
equation solved in the system is Newton’s second law of motion
(equation 1) under the Signorini condition, where the impulse
(λ̄ ∈ Rm) is defined as the change in momentum. The number of
unknowns and equations is six per grain. The velocity (v̄ ∈ R6n)
Signorini conditions (Tonge et al., 2012) state that the impulses
must be positive (i.e., λ̄ ≥ 0), velocities must remove any system
penetrations (i.e., ¯̄J v̄ ≥ 0), and impulses are only applied at con-
tacts if the contacts are not separated (λ̄ ≥ 0 and ¯̄J v̄ ≥ 0):

¯̄M ¨̄x ¼ ¯̄JTλ̄þ f̄ e: (1)

Equation 1 can be discretized using a semiimplicit stepping scheme
with time step h to produce equation 2

¯̄Mðv̄new − v̄oldÞ ¼ h ¯̄JTλ̄þ hf̄ e: (2)

The Signorini conditions causes the discretized equation to be solved
as a linear complementary problem (LCP) (Ani-
tescu and Potra, 1997; Tonge et al., 2012), as de-
scribed in equations 3–5 to obtain the unknown
impulses (λ̄), which contain m unknowns

q̄ ¼ ¯̄Jðv̄old þ hM̄−1 f̄ eÞ; (3)

¯̄N ¼ ¯̄J ¯̄M−1 ¯̄JT; (4)

λ̄ ¼ LCPð ¯̄N; q̄Þ: (5)

The updated new velocity (v̄new) and position
(x̄new) can be calculated using equations 6 and 7:

v̄new ¼ v̄old þ h ¯̄M−1J̄Tλ̄þ hM̄−1 f̄ e; (6)

x̄new ¼ x̄old þ hx̄new: (7)

Friction is implemented using an approximation to the Coulomb fric-
tion model (Tasora et al., 2008; Tonge et al., 2012). With friction, the
LCP is substituted with a boxed LCP. The model assumes that the
tangential force and tangential velocity are opposite in direction. It is
solved at each contact point (a friction force is calculated at each con-
tact point). Because the model is based on a point-force calculation, it
is not suitable for cases in which there is a very large number of con-
tact points between two objects, e.g., when the contact is a surface.
The coefficient of restitution (0 ≤ COR ≤ 1) is defined as the ra-

tio of relative velocities after and before collision, and it accounts
for the loss of kinetic energy during each collision. It is used to
account for the inelastic collisions of the grains.

Time-step integration

Because a granular system typically contains a multitude of indi-
vidual grains, direct integration of the system can be computation-
ally expensive. The implementation of integrator and collision
detection algorithms of DEM requires some care to keep the system
numerically stable. An unstable integrator will lead to jittering of
grains, which forces the use of very small time steps making it

Figure 2. A procedure for creating a nonspherical irregular-shape grain. The Perlin noise cube is colored by its values; the sphere, modified
sphere, and nonspherical grain are colored by the value of the mean curvature.

Figure 3. Three nonspherical irregularly shaped grains are generated using different
Perlin noise amplitudes based on the numerical procedures described in the text and
outlined in Figure 2. All three nonspherical grains have × same volume. The correspond-
ing mean curvature distributions and average sphericity index are calculated. The Perlin
noise frequency is 3, × octave count is 3, lacunarity is 0.5, and persistence is 0.5.
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computationally expensive. PhysX uses an iterative scheme to
solve the conservation of momentum equations on multiple contacts
(Tonge, 2012; Tonge et al., 2012). This is done by sequentially solving
contact pairs at the time step and looping through
the procedure multiple times until the solution is
converged (Tonge, 2012). The number of iterations
required is typically less than 10 to obtain reason-
able results for rendering purposes. Using a stable
integrator allows for using a large time step with-
out losing accuracy. A semi-implicit Euler integra-
tor is used, which guarantees convergence as
opposed to an explicit scheme, which is condition-
ally convergent (Gavrea et al., 2008).

From spherical to nonspherical grain
shapes

In this section, we describe how we create
irregularly shaped grains. Correlated noise is used
here to generate multiple realizations of nonspheri-
cal irregular grain shapes. Figure 2 illustrates the
numerical procedure for creating a nonspherical
irregular grain. The procedure consists of the fol-
lowing steps: (1) generating a spherical mesh using
the regular convex icosahedron approximation
(Popko, 2012), (2) generating 3D coherent noise
cube, (3) displacing the spherical mesh by adding
the values of the scaled 3D coherent noise at
spherical mesh vertices, (4) computing the convex
hull of the result (Barber et al., 1995), and (5) scal-
ing the nonspherical grain based on the given vol-
ume or the radius of the spherical grain.
In this study, we used 3D Perlin noise to modify

the spherical meshes (Perlin, 1985, 2002). Perlin
noise is a type of gradient noise that produces cor-
related noise (Figure 2). The noise is generated by
interpolating between gridded pseudorandom ba-
sis gradient vectors. To speed up the calculation,
the basis vectors can be sampled from a small set
of vectors that have special characteristics, such as
their simplistic dot-product calculation (Perlin,
2002). The interpolation between the gradients
is commonly calculated using a fifth-degree poly-
nomial to ensure continuous first and second
derivatives of the resultant noise. Multiscale noise
is incorporated into the algorithm by superimpos-
ing different Perlin noise functions at multiple
frequency (wavenumber) bands with higher
frequencies having lower amplitudes. The param-
eters used in the Perlin noise implementation are
the number of octaves; the frequency; the lacunar-
ity, which measures the decrease in frequency per
octave; the persistence, which measures the de-
crease in amplitude per octave; and an overall am-
plitude factor.
In this study, the Perlin noise amplitude factor

is varied to produce grains with different morpho-
logical aspects. Because Perlin noise is stochastic,
multiple unique realizations of the grains can
be generated. Figure 3 illustrates three generated

nonspherical irregularly shaped grains using different Perlin noise
amplitudes based on the procedure described in Figure 2. All three
nonspherical grains have the same volume. We quantify the shape of

Figure 4. Mean of mean curvature and sphericity as a function of the Perlin noise
amplitude (bottom). Grains corresponding to the mean values are also illustrated
(top). Coloring is based on the curvature values for the grain. The Perlin noise frequency
is 3, the octave count is 3, lacunarity is 0.5, and persistence is 0.5.

Figure 5. Three different approaches are implemented to compute the size of the
nonspherical irregularly shaped grain by relating to a given size of spherical grain.

Figure 6. Schematic architecture of the 3D grain pack with prescribed grain shape and
size distributions.
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the nonspherical grain using the grain surface mean curvature and
the sphericity. Gatzke and Grimm (2006) provide a review of the
methods available for estimating curvature on triangular meshes.
The mean curvature H is defined as the average of the two principal,

maximum and minimum, curvature values. Additionally, the spheric-
ity Ψ (Wadell, 1935) is defined as the ratio between the surface area
of a sphere with the same volume as the given grain to the surface
area of the grain (equation 8), whereVp is the volume of the grain and

Ap is the surface area of the grain:

Ψ ¼ π
1
3ð6VpÞ23
Ap

: (8)

The sphericity of a sphere is equal to 1.0, whereas
the sphericity of nonspherical grains is less than
1.0. Figure 3 shows the corresponding mean-cur-
vature distributions and average sphericity index
calculated for three nonspherical grains. Figure 4
shows the mean of the mean curvature and sphe-
ricity as a function of the Perlin noise amplitude.
The average mean curvature generally decreases
for low noise values and increases afterward. The
sphericity, on the other hand, always decreases
with the increasing amplitude. The exact relation-
ship with respect to the amplitude depends on the
other parameters used in the Perlin noise imple-
mentation, i.e., frequency, octave count, lacunar-
ity, and persistence.
The size of the nonspherical irregularly shaped

grains can be calculated in several ways by relat-
ing to a given spherical grain size as depicted in
Figure 5. Three different approaches are imple-
mented: (1) by equating the volume of the grain
to the volume of the sphere, (2) by inscribing the
grain in the sphere (Fischer et al., 2003), or (3) by
inscribing the sphere in the grain. Note that op-
tion (1) preserves the volumetric input distribu-
tion. More complex shapes and processes can
also be integrated. Grains, such as shells, can be
generated using previously defined shapes using
external modeling software or generated pro-
cedurally in real time (if they can be parameter-
ized). A current limitation is set on the number
of vertices in the mesh; therefore, external soft-
ware might be needed to resample high-resolution
meshes to lower resolution such as the free and
open source MeshLab (Cignoni et al., 2008).

Assembling of grain packs

The grain pack is assembled by pouring grains
with prescribed grain-size distribution in a con-
tainer under the influence of gravitational force
(Figure 6). A grain pack is made of layers depos-
ited sequentially. Each layer is composed of
grain groups that are deposited simultaneously,
and each grain group is made of several grains.
Each grain group has a specified shape, proper-
ties (such as density, friction, and coefficient of
restitution), and prescribed grain-size distribu-
tion. The shapes of the grains can be defined as
spherical, nonspherical regular (cubes, cylinders,
ellipsoids, etc.), and nonspherical irregular. The

Figure 7. A general workflow to generate grain packs of spherical and nonspherical
grains.

Figure 8. Simulations of random, fining upward, and coarsening upward grain packs of
spherical and nonspherical irregularly shaped grains.
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total number of grains in the simulation is defined by the user. The
proportion of the various grain groups and layers can be defined
based on volume or frequency.
The practical workflow to assemble the grain pack is depicted in

Figure 7. Avirtual container (a rectangular box or a cylinder) is used
to collect the generated grains. The size of the container can be
set manually or estimated automatically from the expected total
grain volume and the expected pore fraction in the resultant grain
pack. Given a layer with one or more grain groups, random sam-
pling based on the proportion of each grain group is used to deter-
mine the next grain type. The grain is then generated based on either
random sampling from the size distribution, fining upward rule, or
coarsening upward rule (Figure 8). A possible random position in
the x-y plane above the container is sampled and tested for overlap
with previously generated grains. If there is an overlap, a new ran-
dom position is sampled. If there is not an overlap, the grain is cre-
ated at that position and allowed to freely fall under the influence of
gravity. Once a layer is deposited, a user-defined rest period is used

to make sure that the layer comes to rest. The layer can also be
cemented if desired, i.e., the grains are constrained into their posi-
tion with no rotation, after the rest period. The next layer is then
deposited as defined. Once assembling is finished, outputs can be
saved. A data file is exported that contains the final location, rota-
tion, scale, and volume of each grain. Mesh files of the grain pack
and each grain separately can be exported for further analysis.
Note that the approach described above produces poured loose

grain packs. Shaking is implemented to attempt to simulate poured
dense grain packs by vibrating the container as depicted in Figure 6.
There are two types of shaking methods: translational and rotational
shaking. Translation shaking (dx) was done using a random trans-
lation in the three dimensions (equation 9), where maxðpÞ is the

Figure 9. Computational time as a function of grain number n. The
computer specifications used are listed in the text.

Figure 10. Random loose and dense monodis-
perse grain packs of 5000 ellipsoids with aspect
ratios of 0.2 (i.e., disks), 1.0 (i.e., sphere), and
2.0 (i.e., needles).

Figure 11. Comparison of coordination number distributions com-
puted from the simulations of random loose and dense grain packs
of identical frictionless spherical grains with data from Finney
(1970) and Al-Raoush and Alsaleh (2007).
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maximum translation measured as a percentage of the container
length in each direction. Rotational shaking (dϕ) is done by random
rotation (equation 10) around the bottom center of the container
with maxðϕÞ being the maximum rotational angle. The magnitude
of the shaking can be defined by the user. In addition, pressure can
be applied using the container lid to create a more dense grain pack.

dx ¼ random rangeð0; 1Þ ×maxðpÞ; (9)

dϕ ¼ random rangeð0; 1Þ ×maxðϕÞ: (10)

The computational time for each grain pack is in the order of tens of
minutes. Figure 9 shows the benchmark results using a 2013 iMac
with a 3.5 GHz Intel i7 processor, a 16 GB 1600 MHz DDR3 RAM,
and an Nvidia GeForce GTX 775M graphic card. Computational
time can be modeled by a power law with an exponent of approx-
imately 1.6–1.7 for spherical grains and approximately 1.9–2.0
for irregularly shaped grains. As expected, shaking the container

increases simulation time as more grains are
moving and more contacts are involved in the
simulation.

Characterization of the grain packs

In this section, we present and characterize the
structure of the generated random loose and dense
assemblies of spherical, nonspherical regular
(ellipsoids with various aspect ratio), and non-
spherical irregular grains. To characterize the
grain shape, the sphericity and mean curvature
definitions are used. Additionally, we compared
the porosity estimates obtained from the simula-
tions with published numerical and experimental
measurements in the literature.

Spherical and nonspherical regular shapes

We generated two sets of grain packs with 10 different random
monodisperse frictionless ellipsoids (each with 5000 grains) with
aspect ratios between 0.2 and 2.0 (e.g., Figure 10). The first grain
pack set is a random loose pack. The second set is a random dense
pack, which is achieved by continuously shaking the container with
translational and rotational shaking maximum magnitudes of
0.0002 ×Dcontainer. This magnitude of translational and rotational
shaking is chosen to attempt to generate random dense grain pack
of identical spheres, which typically have a porosity of approxi-
mately 0.36 (Baule and Makse, 2014). All of the grains have the
same density of 2.65 g∕cm3, that of a quartz mineral. The static
and dynamic coefficients of friction between individual grains
are assumed to be zero; in other words, the grains are frictionless.
The coefficient of restitution is assumed to be 0.1 to prevent con-
tinuous elastic bounciness of the grains in the container.
In Figure 11, we compared the coordination number distributions

computed from the simulations of random loose and dense grain
packs of identical frictionless spherical grains with analysis applied
on the Finney (1970) grain pack and the analysis of Al-Raoush
and Alsaleh (2007). The coordination number distribution from
the generated random loose grain pack is consistent with other

Figure 12. Comparison of solid volume fractions computed from
the simulations of random loose and dense grain packs of friction-
less ellipsoids with various aspect ratios between 0.2 and 2.0 with
Man et al. (2005) and Donev et al. (2004) data.

Figure 13. Random dense monodisperse grain packs of 2500 nonspherical irregular
shape grains with Perlin noise amplitudes of 0.1, 0.2, and 0.5.

Figure 14. The computed porosity of random dense monodisperse
grain packs of nonspherical irregularly shaped grains as a function
of Perlin noise amplitude. Note that the zero Perlin noise amplitude
corresponds to random dense monodisperse grain pack made up
spherical grain, which typically have a porosity of approximately
0.36 (Baule and Makse, 2014).
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experimental studies of glass beads. Note that
Al-Raoush and Alsaleh (2007) find that co-
ordination number of less than four has a higher
proportion than the generated grain pack and Fin-
ney (1970) grain pack. This could be due to the
fact that Al-Raoush and Alsaleh (2007) include
grains on the boundary of the experiment. This
study and the results from the Finney grain pack
do not include grains from the boundary. The gen-
erated dense pack shifts the coordination number
distribution to higher values, as expected.
Additionally, we computed the solid volume

fraction as a function of the grain aspect ratio
(Figure 12). The results are consistent with the
simulation results from Man et al. (2005), which
state that some random dense grain packs of ellip-
soids with prescribed aspect ratio are as dense or
denser than random dense grain pack of spheres,
as depicted in Figure 12. The porosity, approxi-
mately 0.36, of the random dense grain pack of
the spheres, is in good agreement with Man et al.
(2005); however, the porosity values of the ran-
dom dense grain pack of ellipsoids with varying
aspect ratios are higher than the ones in Man et al.
(2005). The discrepancy can be explained by the
fact that Man et al. (2005) simulate the grain packs
under confining pressure, which will result in
lower porosity. Donev et al. (2004) conduct lab
experiments on oblate spheroids with aspect ratios
of approximately 0.52 and 0.53, where the mea-
sured solid volume fractions are approximately
0.665 and 0.695, respectively. These experimental
results fall between our and Man et al.’s. (2005)
numerical results.

Irregularly shaped grain — Monodisperse and
polydisperse grain packs

We generated 10 different random dense monodisperse grain
packs with 2500 frictionless nonspherical grains (e.g., Figure 13).
The shapes of the irregular grains were generated (as described in
the “From spherical to nonspherical grain shapes” section) with Per-
lin noise amplitudes between 0 (i.e., spheres) and 1.0. The applied
maximum translational and rotational shaking magnitudes are
0.0002 ×Dcontainer. All of the grains have the same properties as
in the previous sections. The porosity as a function of Perlin noise
amplitude is illustrated in Figure 14. The initial porosity is consis-
tent with other studies, which typically report a porosity of approx-
imately 0.36 (Baule and Makse, 2014). The porosity decreases as a
function of Perlin noise amplitude from 0.36 to 0.28. There is a
drastic porosity reduction when the Perlin noise amplitude increases
from 0 to 0.2. This indicates that a little bit of surface roughness, or
angularity of the grains, which is observed in most real granular
media, greatly affects the expected dense packing porosity. Once
the Perlin noise amplitude exceeds 0.4, the porosity does not
change.
In addition to the monodisperse grain packs, we also explored

polydisperse grain packs. We numerically generated 10 different
random dense polydisperse grain packs of frictionless nonspherical
grains with Perlin noise amplitudes between 0 and 1.0. The random

dense grain packs are generated by pouring 2500 grains with a pre-
scribed log-normal size distribution and Perlin noise amplitudes
(e.g., Figure 15). The applied maximum translational and rotational
shaking magnitudes are 0.0002 ×Dcontainer. All of the grains have
the same properties as in previous sections. The porosity as a func-
tion of the Perlin noise amplitude is illustrated in Figure 16. The
porosity of the random dense polydisperse packing of spherical
grains with a Perlin noise amplitude of zero is approximately
0.32. The porosity decreases as a function of Perlin noise ampli-
tudes from 0.32 to 0.24. Similarly to monodisperse packing, drastic
porosity reduction occurs when the Perlin noise amplitude increases
from 0 to 0.2. Once the Perlin noise amplitude exceeds 0.3, the
porosity does not change significantly.

CONCLUSION

We introduced software for generating 3D grain packs of spherical
as well as nonspherical (regular and irregular)-shaped grains with
prescribed size distributions and grading. We used a DEM method
to assemble grain packs with spherical and nonspherical shapes under
the influence of gravitational forces. An efficient approach to creating
nonspherical irregular shapes using coherent noise modification of
the spherical grain surface is also presented. Various random loose
and dense grain packs of spherical and nonspherical (regular and
irregular) grains are presented to show the validity and consistency
of the generated packs as compared with previous studies in the

Figure 15. Random dense polydisperse grain packs of 2500 nonspherical irregularly
shaped grains with Perlin noise amplitudes of 0.1, 0.2, and 0.5.

Figure 16. (a) Log-normal nonspherical irregular grain-size distribution in a random
dense polydisperse pack and (b) computed porosity of random dense polydisperse grain
packs of nonspherical irregularly shaped grains as a function of the Perlin noise ampli-
tude. Note that the zero Perlin noise amplitude corresponds to a random dense poly-
disperse grain pack made up of spherical grain.
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literature. Results show that a small increase in the roughness of the
grains results in a relatively large decrease in porosity.
Several improvements are planned. The current numerical frame-

work is implemented using a recent version of PhysX that uses a
CPU. This allows for the generation of thousands to tens of thou-
sands of grains in a reasonable time (minutes to tens of minutes).
Newer versions of PhysX using GPUs in some steps of the system,
such as contact detection, will increase the efficiency drastically
(5×–10× depending on the number of grains simulated) and allow
for the simulation of tens of thousands of grains in seconds to tens
of seconds. Finally, the current collision detection algorithm only
works on convex shapes. This means that concave shapes cannot be
used to generate nonspherical grains. Once automatic convex de-
composition is implemented, this limitation can be overcome.
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