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ABSTRACT: The present work was undertaken to elucidate the
facet-dependent activity of Ag for the electrochemical reduction of
CO2 to CO. To this end, CO2 reduction was investigated over Ag thin
films with (111), (100), and (110) orientations prepared via epitaxial
growth on single-crystal Si wafers with the same crystallographic
orientations. This preparation technique yielded larger area electrodes
than can be achieved using single-crystals, which enabled the
electrocatalytic activity of the corresponding Ag surfaces to be
quantified in the Tafel regime. The Ag(110) thin films exhibited
higher CO evolution activity compared to the Ag(111) and Ag(100)
thin films, consistent with previous single-crystal studies. Density
functional theory calculations suggest that CO2 reduction to CO is
strongly facet-dependent, and that steps are more active than highly
coordinated terraces. This is the result of both a higher binding energy
of the key intermediate COOH as well as an enhanced double-layer electric field stabilization over undercoordinated surface
atoms located at step edge defects. As a consequence, step edge defects likely dominate the CO2 reduction activity observed
over the Ag(111) and Ag(100) thin films. The higher activity observed over the Ag(110) thin film is then related to the larger
density of undercoordinated sites compared to the Ag(111) and Ag(100) thin films. Our conclusion that undercoordinated sites
dominate the CO2 reduction activity observed over close-packed surfaces highlights the need to consider the contribution of
such defects in studies of single-crystal electrodes.
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■ INTRODUCTION

Understanding the facet-dependence of electrocatalytic con-
versions is a long-standing topic in electrochemistry and is
essential for identifying and optimizing the active sites required
to achieve high activity and product selectivity. Work
conducted over the past two decades on the electrochemical
reduction of CO2 over Cu,1−5 Ag,6,7 Pd,8 and Rh9 single-
crystal electrodes has suggested that it is possible to distinguish
the CO2 reduction activity of different surface facets. At the
same time, theoretical studies have found that CO2 reduction
to CO occurs preferentially at step sites,10,11 and experiments
have revealed that grain-boundary defects are active for CO2
reduction.12−14 These facts highlight the importance of
understanding the influence of defects on the activity observed
over oriented surfaces, since they may contribute in a very
significant manner.
Polycrystalline silver (Ag) is one of the only monometallic

electrocatalysts capable of achieving CO Faradaic efficiencies

(FEs) approaching 100%, with hydrogen (H2) being the only
other product formed.15−18 The resulting product mixture can
then be used to produce hydrocarbons and alcohols by CO
hydrogenation.19−21 Consequently, efforts have been under-
taken to improve the CO evolution activity and FE observed
over Ag-based electrocatalysts. These studies have revealed
that nanostructured Ag exhibits superior CO evolution activity
and FE compared to polycrystalline Ag foils over a wide range
of potentials.22−26 What is often not clear is whether the
enhanced CO evolution activity observed over nanostructured
Ag is due to its higher surface area or to its fundamentally
superior intrinsic activity. The difficulty in establishing the
primary cause for the superior activity observed over
nanostructured Ag is a consequence of the lack of surface-
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area normalized activity data.27 However, in those cases where
the intrinsic activity of nanostructured Ag has been measured,
its activity has been found to be roughly an order of magnitude
higher than that of polycrystalline Ag foil.22 The superior
intrinsic activity observed over nanostructured Ag has been
hypothesized to be a consequence of surface defects,22,25

residual halide promotion,23 or an elevated local pH.24

Theoretical studies of the thermodynamics of CO evolution
over different Ag surfaces support the idea that the CO
evolution activity of undercoordinated sites is superior to that
of basal plane sites.7,10 However, these studies have not been
validated by a concurrent experimental investigation. While
CO2 reduction over Ag single-crystals with different
orientations has been reported, the cathode potentials and
hence the current densities used were high enough for the
mass transfer of CO2 and ionic species to influence the results.

6

Under such circumstances, changes in the pH and CO2
concentration near the cathode surface are known to occur,
resulting in electrocatalytic activities and selectivities that are
not solely reflective of the composition and structure of the
electrocatalyst.6,27,28 Unfortunately, the facet-dependent activ-
ity of Ag has not been reported within the Tafel regime due to
challenges associated with accurate product quantification over
small single-crystal electrodes at low current densities.
The present study was undertaken to gain insights into the

facet-dependence of the CO evolution activity of Ag. To this
end, we developed a novel method for growing Ag thin films
with (111), (100), and (110) orientations by epitaxial growth
on single-crystal Si wafers with the same orientations. The
large geometric area of these thin film electrodes enabled their
electrocatalytic activities to be quantified in the Tafel regime.
The Ag(110) thin film exhibited superior intrinsic activity to
both the Ag(111) and Ag(100) thin films. Careful DFT
analysis that includes the effects of the double-layer electro-
static field shows that defect sites dominate the activity
observed over the Ag(111) and Ag(100) thin films, while both
the Ag(110) facets and step defects contribute significantly to
the activity observed over the Ag(110) thin films. Our analysis
highlights the need for careful studies with single-crystals
having very low defect densities or the need to block such
defect sites, since even a minute fraction of defects is capable of
dominating the electrocatalytic activity observed over highly
coordinated low-index planes.

■ EXPERIMENTAL SECTION
Electrode Preparation. Epitaxial Ag thin films were

prepared by sputter deposition of Ag (99.999% Kurt J. Lesker)
onto polished single-crystal Si wafers (1−10 Ω cm Virginia
Semiconductor) with (111), (100), and (110) orientations
using an AJA ATC Orion-5 magnetron sputtering system. The
native oxide layer on the Si wafers was removed immediately
before deposition by submersion in 10 wt % HF. An IR lamp
was used to heat the Si wafers to 300 °C prior to and
throughout the duration of the deposition. Ag was sputtered
onto the etched Si wafers at a rate of 1 Å/s under Ar to obtain
a thin film with a thickness of 100 nm.
Electrode Characterization. The crystal structures of the

Ag thin films were analyzed with a Rigaku Smartlab X-ray
diffractometer (XRD) using Cu Kα radiation (40 kV, 40 mA).
Symmetric out-of-plane θ/2θ scans were conducted to identify
the out-of-plane growth orientation of the Ag crystallites in the
thin films. Symmetric in-plane φ scans at Bragg reflections
corresponding to both Si and Ag were conducted to determine

the orientation of the Ag crystallites with respect to the Si
substrate. Symmetric out-of-plane Ω scans were conducted to
determine the average degree of misorientation of the Ag
crystallites with respect to the surface normal. X-ray pole
figures of the Ag thin films were acquired using a
PANanalytical X’Pert diffractometer using Cu Kα radiation.
The work functions of the Ag thin films were measured with

a Kratos Axis Ultra DLD X-ray photoelectron spectrometer
(XPS) using monochromatized Al Kα radiation (15 kV, 15
mA) and an accelerating voltage of 9 V. Ion-scattering
spectroscopy (ISS) was also conducted in the same instrument
to measure the surface composition of the Ag thin films before
and after electrolysis. All spectra were acquired using a He ion
beam with an energy of 1 keV. No impurities were detected on
the surface of the thin films before or after electrolysis by ISS
(see section SI-1).

Electrochemical Characterization. All electrochemical
measurements were conducted in a custom gastight electro-
chemical cell fabricated from a PEEK block.29 The cell was
cleaned prior to each experiment by sonication in 20 wt %
nitric acid. An anion-conducting membrane (Selemion AMV
AGC Inc.) separated the cathode and anode, which were in a
parallel configuration. Each electrode chamber contained a gas
dispersion frit to provide ample electrolyte mixing. The
geometric surface area of each electrode was 1 cm2, and the
electrolyte volume of each electrode chamber was 1.8 mL. A
glassy carbon plate (Type 2 Alfa Aesar) was utilized as the
anode. Platinum was not used as the anode due to the
possibility of contaminating the cathode.27,30 The working
electrode potential was referenced against a miniature Ag/
AgCl electrode (Innovative Instruments Inc.) that was
calibrated against a homemade standard hydrogen electrode.
Unless stated otherwise the electrolyte was a 0.05 M K2CO3
(99.995% Sigma-Aldrich) solution prepared using 18.2 MΩ cm
deionized (DI) water with the electrolyte further purified using
Chelex 100 (Na form Sigma-Aldrich) to remove trace levels of
metal cations.27,31 Both electrode chambers were sparged with
CO2 (99.999% Praxair Inc.) at a rate of 10 sccm for 30 min
prior to and throughout the duration of all electrochemical
measurements unless explicitly stated otherwise. Upon
saturation with CO2 the pH of the electrolyte was 6.8, which
was maintained throughout the duration of all electrocatalytic
measurements. The hydrodynamic boundary layer thickness at
the cathode surface was determined to be ∼50 μm by
measuring the diffusion limited current of ferricyanide
reduction (see section SI-2).
A Biologic VSP-300 potentiostat was utilized to perform all

electrochemical measurements. Electrode potentials were
recorded versus the reference electrode and converted to the
RHE scale. The uncompensated resistance (Ru) of the
electrochemical cell was determined by conducting potentio-
static electrochemical impedance spectroscopy (PEIS) with a
sinus amplitude of 20 mV and frequencies ranging from 50 Hz
to 500 kHz (see section SI-3). For in situ, 85% of Ru was
compensated for, and the last 15% was postcorrected to arrive
at accurate potentials. The redox properties of the Ag thin films
were assessed by performing reversible chloride adsorption
during cyclic voltammetry from −0.5 to +0.4 V vs SHE at a
scan rate of 500 mV/s in 0.01 M KCl saturated with N2 until a
stable voltammogram was obtained, which occurred in
approximately 10 cycles.6 The electrocatalytic activity of each
Ag thin film was assessed by conducting chronoamperometry
staircases from −0.5 to −1.5 V vs the reversible hydrogen
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electrode (RHE) with a step size of 100 mV and a step length
of 15 min. Each thin film orientation was tested at least three
separate times to ensure the statistical relevance of the
observed trends. The relative roughness factors of the tested
Ag thin films were determined by dividing their double-layer
capacitances by the minimum double-layer capacitance
measured over the Ag thin films. The double-layer capacitance
of each tested Ag thin film was measured by conducting cyclic
voltammetry in a potential range where no Faradaic processes
occur at a series of increasingly rapid scan rates immediately
after the terminal potential of the chronoamperometry
staircase was reached (see section SI-4).
Product Analysis. The composition of the electrochemical

cell effluent was analyzed using an Agilent 7890B gas
chromatograph (GC) equipped with a pulsed-discharge helium
ionization detector (PDHID). The effluent was introduced
directly into the sample loop of the GC and was sampled at
least 10 min after each chronoamperometry potential step. The
gaseous constituents of the effluent sample were separated in
He (99.9999% Praxair Inc.) using a Hayesep-Q capillary
column (Agilent) in series with a packed ShinCarbon ST
column (Restek Co.). After opening the gas sampling valve, the
column oven of the GC was maintained at 50 °C for 1 min
followed by a temperature ramp at 30 °C/min to 250 °C,
which was then maintained for the duration of the analysis.
The PDHID was calibrated by analyzing a series of NIST-
traceable standard gas mixtures (Airgas Inc.) (see section SI-
5).
The concentration of liquid-phase products in the electrolyte

was determined using a Thermo Scientific UltiMate 3000
liquid chromatograph (HPLC) equipped with a refractive
index detector (RID). The electrolyte samples were collected
from each electrode chamber after electrolysis stored in a
refrigerated autosampler until analyzed. The liquid-phase
products contained in a 10 μL aliquot were separated using
a series of two Aminex HPX 87-H columns (Bio-Rad Inc.) and
a 1 mM sulfuric acid eluent (99.999% Sigma-Aldrich). The
column oven was maintained at 60 °C for the duration of the
analysis. The signal response of the RID was calibrated by
analyzing standard solutions of each product at a concentration
of 1, 10, and 50 mM (see section SI-6). The only liquid-phase
products observed were trace amounts of formic acid.
Density Functional Theory. Density functional theory

calculations of reaction energetics were carried out with a
periodic plane-wave implementation and ultrasoft pseudopo-
tentials using QUANTUM ESPRESSO version 5.132 interfaced
with the Atomistic Simulation Environment (ASE).33 We
applied ultrasoft pseudopotentials and the BEEF-vdW func-
tional, which provides a reasonable description of van der
Waals forces while maintaining an accurate prediction of
chemisorption energies.34 Spin-polarized calculations were
performed using plane-wave and density cutoffs of 500 and
5000 eV, respectively, as well as a Fermi-level smearing width
of 0.1 eV.
In general, adsorption energies were evaluated using four-

layer 4 × 4 supercells with all but the top two layers
constrained, 20 Å separation of the surface slabs, and [4 × 4 ×
1] Monkhorst−Pack k-point grids.35 For the calculations
presented in Figures 5 and 6, 3 × 3 unit cells were used. All
structures were relaxed using a BFGS line search algorithm
until force components were less than 0.03 eV/Å. A dipole
correction was applied to decouple the electrostatic interaction
between the periodically repeated slabs. Zero-point energy and

finite temperature corrections in the harmonic oscillator
approximation were evaluated from the adsorbate vibrations
using ASE. We applied a correction of 0.33 eV to the energy of
CO2(g), which was determined from fits to experimental gas-
phase reaction energetics.34 All adsorption energies are
available free-of-charge at https://www.catalysis-hub.org/
publications/ClarkInfluence2018.
A sawtooth-like external potential (homogeneous electric

field) was applied to the relaxed structures along the z-
direction (perpendicular to the slabs) with varying field
strengths between −0.3 and 0.4 V/Å. Following ref 36, we
also applied a dipole correction to decouple the periodic
interaction of the slabs in the z-direction. The resulting field-
dependent adsorption energies were interpolated with a
quadratic polynomial to calculate the dipole moments and
polarizabilities. By this procedure, we obtained the analytic
field-dependency of all adsorption energies.

■ RESULTS AND DISCUSSION
Thin Film Deposition. We investigated two approaches

for preparing epitaxial Ag thin films on single-crystal Si wafers.
The first approach was based on prior studies showing that
copper (Cu) thin films can be grown epitaxially on silicon (Si)
single-crystal wafers at room temperature.37−40 Epitaxial
growth is possible because Cu diffuses rapidly enough through
Si at room temperature to form a copper silicide interlayer
during the deposition. This interlayer relaxes the lattice
mismatch between Cu and Si, enabling epitaxial growth.37

The epitaxial growth of silver (Ag) thin films on copper silicide
interlayers has also been reported.41,42 However, epitaxial Ag
thin films prepared using this approach exhibited excessive
hydrocarbon selectivities uncharacteristic of Ag at potentials
cathodic of −1 V vs RHE (see section SI-7). Ion-scattering
spectroscopy (ISS) revealed that this is due to the presence of
Cu on the surface of these electrodes after CO2 reduction,
which most likely reaches the electrode surface as a
consequence of adsorbate induced segregation from the
copper silicide interlayer.43 To avoid this phenomenon, we
developed a Cu-free method of epitaxially depositing Ag thin
films on single-crystal Si wafers at high temperature. The
elevated deposition temperature enables Ag to diffuse rapidly
enough through Si to form a silver silicide interlayer during the
deposition.

Bulk Crystal Orientation. Symmetric X-ray diffraction
(XRD) scans of Ag thin films deposited onto Si(111), Si(100),
and Si(110) single-crystal wafers were conducted to determine
if the orientation of the Si substrate impacts the out-of-plane
growth orientation of the Ag thin films. The only Ag diffraction
peaks observed were those corresponding to the orientation of
the substrate, indicating that the Ag thin films are textured out-
of-plane with orientations matching the substrate (see section
SI-8). X-ray pole figures were conducted to determine both the
out-of-plane and in-plane orientation of the Ag crystallites in
the thin films and validate that they grow epitaxially on the Si
substrates. The results are shown in Figure 1. The Ag(200) X-
ray pole figure of the Ag thin film deposited onto Si(111)
exhibits the 3-fold symmetry characteristic of Ag(111),
confirming the epitaxial nature of the thin film with the
relationship Si(111)∥Ag{111}. Furthermore, the lack of 6-fold
symmetry indicates that the Ag(111) thin films are not
twinned.39 The Ag(111) X-ray pole figure of the Ag thin film
deposited onto Si(100) exhibits the 4-fold symmetry character-
istic of Ag(100), confirming the epitaxial nature of the thin film
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with the relationship Si(100)∥Ag{100}. Furthermore, the Ag
crystallites in the thin film do not exhibit in-plane rotation
relative to the underlying Si substrate, contrary to what has
been observed over epitaxially deposited Cu thin films.38 As a
result, the epitaxially deposited Ag thin films exhibit less
crystallographic tilt, yielding superior film quality. Finally, the
Ag(110) X-ray pole figure of the Ag thin film deposited onto
Si(110) exhibits strong intensity parallel to the surface normal,
confirming the epitaxial nature of the thin film with the
relationship Si(110)∥Ag{110}. Ag(111) and Ag(200) X-ray
pole figures of the Ag(110) thin film were also acquired (see
section SI-9).
Atomic Surface Structure. Reversible chloride adsorption

was conducted over the Ag thin films to confirm their atomic
surface structures under near-neutral electrochemical con-
ditions.6 As shown in Figure 2, distinct redox waves associated

with the reversible adsorption and desorption of chloride
anions were observed over each Ag thin film. The consistency
of the reversible potentials for chloride adsorption measured
over the Ag thin films with those reported over the
corresponding Ag single-crystals supports the conclusion that
the structure of the surface is consistent with the bulk
crystallographic orientation of the Ag thin films. Furthermore,
atomic force microscopy (AFM) was conducted over the Ag
thin films to visualize their microscopic surface structure (see
section SI-10). While Ag(111) and Ag(100) exhibited similar
surface roughness, the Ag(110) thin films exhibited more
pronounced topological features, in agreement with the higher
double-layer capacitance measured over thin films with this
crystallographic orientation.
CO2 Reduction Activity. The CO2 reduction activity of

the Ag(111), Ag(100), and Ag(110) thin films was measured
by conducting chronoamperometry staircases from −0.5 to

−1.5 V vs RHE in 0.1 M KHCO3, as shown in Figure 3. The
observed partial current densities were normalized by the
corresponding thin film roughness factors, which were
measured by capacitive cycling immediately after the terminal
potential of the chronoamperometry staircase was reached.
While the roughness factors of the Ag(111) and Ag(100) thin
films were found to be roughly equivalent, the Ag(110) thin
films exhibited ∼15% higher surface area. The roughness
factors and electrocatalytic activities observed over the Ag thin
films were found to be highly reproducible from sample to
sample, suggesting that the surface structures and defect
densities of the thin films are also highly reproducible.
The hydrogen evolution reaction (HER) activity observed

over the Ag thin films during CO2 reduction exhibits three
distinct potential regimes. At potentials anodic of −0.7 V vs
RHE, the relative HER activities observed over the Ag thin
films are consistent with what was observed in the absence of
CO2 (see section SI-11). However, the HER activities are
suppressed compared to what would be expected based on an
extrapolation of the initial Tafel kinetics at potentials cathodic
of −0.7 V vs RHE. Interestingly, prior studies of HER over
polycrystalline Ag have also shown that the formation of H2 is
inhibited at potentials cathodic of −0.7 V vs RHE in the
presence of CO2 (see section SI-12).44 Furthermore, the onset
potential for the HER activity suppression agrees well with the
onset potential for CO evolution over polycrystalline Ag.44

Thus, the suppression of HER is likely caused by CO adsorbed
on Ag, which has been observed using both Raman and
infrared spectroscopies during CO2 reduction.

45,46 Finally, the
HER activity observed over the Ag thin films resumes Tafel
behavior at potentials cathodic of −1 V vs RHE. However, the
Ag thin films exhibit equivalent HER activities in this potential
regime.
The CO evolution activity observed over the Ag thin films

exhibits Tafel behavior down to a potential of roughly −1 V vs
RHE. Prior investigations of CO2 reduction over polycrystal-
line Ag have shown that the CO partial current density is
dependent on the hydrodynamics of the electrochemical cell at
potentials cathodic of −1 V vs RHE, suggesting that mass
transfer limitations cause the CO evolution activity to deviate
from Tafel behavior in this potential regime.27,28,44 Interest-
ingly, the onset of these mass transfer limitations correlates
with the recovery of the Tafel behavior of HER observed at
potentials cathodic of −1 V vs RHE. This observation provides
further support for the hypothesis that the suppression of HER
is caused by the adsorption of CO on the Ag surface. Prior to
the onset of mass transfer limitations, the intrinsic CO
evolution activities observed over the Ag(111) and Ag(100)
thin films are approximately equivalent. However, the Ag(110)
thin films exhibit superior intrinsic activity to both the Ag(111)
and Ag(100) thin films by a factor of ∼5 at −1 V vs RHE. As
shown in section SI-13, the relative intrinsic CO evolution
activities observed over the Ag thin films are in agreement with
what has been observed over Ag(111), Ag(100), and Ag(110)
single-crystals.6 We note, however, these prior activity
measurements were conducted at potentials where mass
transfer effects begin to be significant and did not span a
wide enough potential range for accurate and intrinsic Tafel
slopes to be determined.

Theoretical Insights: Structural Sensitivity and Local
Field Effects. Recent theoretical studies have concluded that
the reduction of CO2 to CO proceeds via the following
elementary steps:7,10,47,48

Figure 1. X-ray pole figures of (A) Si(111)∥Ag(111), Ag(200)
intensities shown; (B) Si(100)∥Ag(100), Ag(111) intensities shown;
and (C) Si(110)∥Ag(110), Ag(022) intensities shown.

Figure 2. Reversible chloride adsorption over the Ag thin films
measured during cyclic voltammetry at 500 mV/s in 0.01 M KCl. The
dotted lines correspond to the reversible potentials of chloride
adsorption reported over the corresponding Ag single-crystals.6
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(1) CO2(g) + * + H+ + e− → *COOH
(2) *COOH + H+ + e− → *CO + H2O

(3) *CO → CO(g) + *

where * refers to an unoccupied site on the catalyst surface and
*X (where X = H, COOH, and CO) refers to X adsorbed on
the catalyst surface. Proton and electron free energies are
treated via the computational hydrogen electrode.49 Since
reaction 1 is the last to become exergonic as the applied
potential is made more cathodic, this suggests that it is the
rate-determining step of the reaction.7,10,47,48 However, we
note that there is still a debate in the literature about the rate-
determining step of CO evolution over Ag and Au electro-
catalysts, with some arguing that the adsorption of CO2 with
simultaneous electron transfer is the rate-determining step over
Ag50 and Au surfaces.51,52 Although various studies on the
kinetic isotope effect (KIE) or pH-dependence suggest that
this step is the rate-determining step,51 more recent
investigations raised doubt in these conclusions and instead
concluded that the reduction of *CO2 to *COOH is the rate-
determining step.52 Assuming that *CO2 and *COOH show
similar binding energy trends among different surface facets,
the consideration of *COOH as the key intermediate should in

both cases be valid for the discussion here. However, future
studies should investigate the importance of the first
adsorption step in the reaction mechanism to validate this
assumption. Previous studies have suggested that the COOH
binding energy is highly dependent on the atomic surface
structure of the electrocatalyst,10 with stepped facets generally
binding COOH more strongly over all transition metals (see
section SI-14). In contrast, the H binding energy is largely
structure-insensitive. Since the H binding energy is a good
descriptor of HER activity,53 the intrinsic HER activity of Ag is
expected to be largely independent of the atomic surface
structure.
Prior work has also shown that local electric fields generated

by the presence of excess cations in the Helmholtz plane at
potentials cathodic of the potential of zero charge (PZC) can
significantly stabilize polarizable reaction intermediates.4,54

The influence of the electric field strength on the stability of
the adsorbed intermediates participating in reactions 1−3 was
calculated for different Ag surfaces. As seen in Figure 4, the
degree of stabilization for a given species depends on its
identity, binding site and configuration, as well as the atomic
surface structure and the magnitude of the electric field. Details
of these calculations are given in the Supporting Information

Figure 3. CO2 reduction activity observed over the Ag(111), Ag(100), and Ag(110) thin films vs applied potential. Partial current densities for H2
and CO on (A) linear scale and (B) log scale. (C) H2 and CO Faradaic efficiencies.

Figure 4. Homogeneous electric-field-dependent binding free energies of reaction intermediates over Ag(111), Ag(100), Ag(110), and Ag(211) at
0 V vs RHE as calculated by applying a sawtooth potential. The solid lines represent a parabolic extrapolation of the calculated data points. Only
the most stable adsorption configurations are depicted. Kinks in the solid lines indicate a change in the most stable adsorption site. The adsorption
sites are t = top, st = top of the step, h = hollow, br = bridge, and hbr = high bridge.
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(see section SI-15). In general, the degree of the electric field
stabilization increases with the polarizability and dipole
moment of the species in question. As a result, the electric
field does not significantly impact the adsorption energy of *H
since it is not polarizable and does not possess a significant
dipole moment. Thus, the HER activity should be relatively
insensitive to the local electric field strength. In contrast, the
electric field significantly stabilizes *COOH because it has a
large polarizability and dipole moment. The stabilization of
*COOH on stepped facets was investigated further using
prototypical step models for the (111) and (100) surface facets
with different step densities. As shown in Figure 5, the stability

of *COOH on the (111) facet is enhanced as the step density
increases at zero electric field. In contrast, the stability of
*COOH on the (100) facet seems to be reduced as the step
density increases. Notably, under the influence of negative
electric fields, all steps show a similar *COOH binding
strength, which is always stronger than the nonstepped terrace.
Τo investigate the impact of the local electric field on the

thermodynamics of CO evolution, we established a link
between the electrode potential and the local electric field
strength by means of a Poisson−Boltzmann model. The
presence of the Helmholtz layer was included by implementing
Robin boundary conditions55 at the electrode surface utilizing
the experimentally determined Helmholtz capacitance of 20
μF/cm2, which is valid for potentials sufficiently negative of the
PZC (for details, see section SI-16).56 In contrast to more
advanced models of the double layer, this strategy provides an
estimate of the Helmholtz layer field at a certain applied
potential by means of a single adjustable parameter, the
Helmholtz dielectric permittivity, which we set to 2 according
to recent experimental results.57 The difference in local field
magnitude among the Ag facets is then determined based on
the PZCs of the respective surfaces. The experimentally
measured work functions of the Ag thin films decrease
systematically with surface atom density, in agreement with
what has been observed over the corresponding Ag single-
crystals (see section SI-17).58 As the work function decreases,
the potential of zero charge shifts to more cathodic potentials,
as shown in Table S2.59,60

The influences of the local electric fields on the reaction
thermodynamics are shown in Figure 6. Comparison of the left

and right panels demonstrates that the inclusion of the mean
electrostatic field predominately lowers the free energies for
reaction 1 and that this effect is most pronounced for
undercoordinated surfaces (i.e., Ag(110) and Ag(211)) at an
applied potential of −1 V vs RHE. Thus, the inclusion of field
effects further improves the reaction thermodynamics over
surfaces with undercoordinated atoms.

Influence of Film Defects on Observed Activity
Trends. Step edge defects have been observed at the surface
of epitaxial thin films prepared using a similar synthesis
protocol.46 The significantly larger driving force for CO2
reduction to CO on steps sites, in particular relative to the
(111) surface facet, suggests that step edge defects in the
epitaxial Ag thin films could contribute disproportionately to
the observed activity of (111) and (100) oriented films. The
extent to which step edge defects contribute to the
electrocatalytic activities observed over the Ag thin films is a
function of their abundance and activity relative to terrace
sites. Figure 7 presents the results of a simple analysis (see
section SI-18) illustrating the contribution of defect sites to the
observed activity as a function of their abundance and activity
relative to terrace sites. A defect density of 1% is generally
enough to dominate the observed activity if their kinetic

Figure 5. Homogeneous electric-field-dependent binding free
energies of *COOH over various Ag facets at 0 V vs RHE as
calculated by applying a sawtooth potential. Only the most stable
configuration of *COOH at zero field has been considered. Stepped
surface facets have been colored according to the prevalent terrace.
The step densities increase from solid to dashed to dotted lines.

Figure 6. Free energy diagrams for CO2 reduction to CO over
Ag(111), Ag(100), Ag(110), and Ag(211) at 0 V and −1 V vs RHE
calculated using the computational hydrogen electrode model. The
free energy diagrams in the right panel are corrected by a
homogeneous electric field calculated using a mean-field model with
a Helmholtz capacitance of 20 μF/cm2 and a dielectric permittivity of
2. Field-dependencies of the free energies were obtained by applying a
sawtooth potential of variable magnitude.

Figure 7. Calculated contribution of defects to the observed activity
based on their abundance and activity relative to terrace sites.
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barriers are only 150 meV lower than that of the majority site.
An estimate of the activation barrier difference can be made by
taking the Ag(211) surface to be representative of a step edge
defect and considering activation barriers for CO evolution to
scale linearly with the relative stability of *COOH. Following
this approach, a defect density of 1% would totally dominate
the activity observed over the Ag(111) thin film. Considering
the stabilizing effect of steps shown in Figure 5, we also expect
step edge defects to dominate the activity observed over the
Ag(100) thin films. In contrast, the COOH binding energy of
the (110) surface facet is already steplike and comparable to
the (111) and (100) step activity, as shown in Figure 5. Thus,
the higher activity observed over the (110) thin films relative
to the (111) and (100) thin films could be attributable to an
increase in the density of undercoordinated active sites. Since
single-crystals typically exhibit a defect density of roughly 1%
(based on a typical miscut of 0.5°),61 a method to titrate these
highly active defect sites by selectively blocking them is needed
to measure the intrinsic electrocatalytic activity of low-index
terraces accurately.62

Influence of Local Field Variations. The analysis up to
this point applies a mean field approach, which does not
consider variations in the local electric field distribution on an
atomistic scale. As shown in ref 63, regions of high surface
curvature tend to localize surface charge and interfacial electric
fields. To investigate the dependence of the local electric field
distribution on the atomic surface structure, we applied a
linearized Poisson−Boltzmann model of the electrolyte in
conjunction with ab initio simulations of the various facets.
Table S2 shows that the undercoordinated surface generally
exhibits significantly larger charge densities, which should give
rise to stronger local electric fields (see section SI-19). These
local variations in the electric field strength would lead to an
enhancement of the activity of undercoordinated sites relative
to fully coordinated surfaces. These effects motivate studies of
the dependence of the local field distribution on the
morphology and atomic surface structure of the electrocatalyst.

■ CONCLUSIONS
We have developed a novel method for growing epitaxial Ag
thin films with (111), (100), and (110) orientations. These
large area thin film electrodes enabled the electrocatalytic
activities of Ag(111), Ag(100), and Ag(110) to be quantified
in the Tafel regime, unlike previous single-crystal studies. The
electrochemical reduction of CO2 to CO over the Ag(110)
thin film exhibits superior activity compared to either the
Ag(111) or Ag(100) thin films, consistent with previous single-
crystal studies. Theoretical analysis indicates that the depend-
ence of the CO2 reduction activity on atomic surface structure
can be attributed to both a general binding preference and an
enhanced electric field stabilization of polarizable CO2
reduction intermediates on undercoordinated surface atoms.
Our theoretical analysis indicates that step edge defects exhibit
much higher activities than either Ag(111) or Ag(100) surface
sites and slightly higher activities than Ag(110) surface sites.
Therefore, the higher activity observed over the Ag(110) thin
films compared to the Ag(111) and Ag(100) thin films is likely
the result of a higher density of undercoordinated active sites.
Finally, the results of our theoretical analysis demonstrate that
the presence of step edge defects can complicate the
quantification of the intrinsic electrocatalytic activity of basal
plane sites with relatively low activity. This observation
highlights the importance of considering the contributions of

defects to the observed CO2 reduction activity of electro-
catalysts. Moreover, it indicates that, to measure the intrinsic
activity of low-index facets of single-crystals, such crystals must
have very low defect densities, and/or the defect sites need to
be poisoned to inactivate them.
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