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1. Introduction
The recent Intergovernmental Panel on Climate Change 
(IPCC) special report on global warming of 1.5°C high-
lighted the importance of reducing short-lived greenhouse 
gases like methane (Intergovernmental Panel on Climate 
Change, 2018). Methane, a major component of  natural 
gas, has a global warming potential that is 36 times that of 
carbon dioxide over a 100-year period (Myhre, et al., 2013), 
and even higher over shorter time periods ( Etminan, 
Myhre, Highwood, & Shine, 2016). Furthermore, methane 

emissions contribute to sea-level rise over much longer 
timescales than their atmospheric lifetimes ( Zickfeld, 
 Solomon, & Gilford, 2017). These consequences are trou-
bling given that official methane emissions inventory in 
the US and Canada have been found to be systematically 
underestimated (Alvarez, et al., 2018; Johnson, Tyner, 
 Conley, Schwietzke, & Zavala-Araiza, 2017).

Recently, Canada and U.S. states such as Colorado and 
California implemented regulations to reduce fugitive 
emissions from the oil and gas industry (Environment 
and Climate Change Canada, 2018; Colorado Department 
of Public Health and Environment, 2014). A major com-
ponent of these regulations is periodic leak detection 
and repair (LDAR) surveys conducted using established 
methods like U.S. Environmental Protection Agency (EPA) 
Method-21 or optical gas imaging (OGI) technologies.

There are two primary challenges to effective methane 
emissions reductions. First, cost-effectiveness is a criti-
cal feature for emission mitigation considering the large 
spatial extent of oil and gas facilities. OGI-based LDAR 
surveys, while anecdotally found to be effective (Keating 
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Research Inc., 2016), are time-consuming – a crew of 2 
people can typically visit 4–6 well pads per day, depending 
on distance between sites. Conducting multiple OGI-based 
surveys every year at large numbers of facilities or visiting 
sparsely distributed sites could be costly, especially when 
low gas prices reduce the economic benefits of increased 
gas recovery. Furthermore, OGI-based leak surveys are 
dependent on operator experience and weather conditions 
(Ravikumar, Wang, McGuire, Bell, Zimmerle, & Brandt, 
2018; Ravikumar, Wang, & Brandt, 2017).

Second, methane emissions are highly stochastic. Many 
recent studies have demonstrated the influence of ‘super-
emitters’ on overall methane emissions (Brandt, Heath, 
& Cooley, 2016). These super-emitters – a small fraction 
of all emission points (top 5%) that contribute over 50% 
of total emissions – are caused by abnormal or otherwise 
unintentional process conditions like equipment malfunc-
tion, failure, or operator error (Zavala-Araiza, et al., 2017). 
Because of the outsize contribution of super-emitters, 
finding and repairing these anomalous emitters as quickly 
as possible is key to effective methane reductions.

To address these two challenges, the solution to meth-
ane leakage detection must be: (1) faster and more 
 cost-effective on a dollars per site basis than OGI-based 
leak detection, and (2) performed much more frequently 
or continuously.

One class of technologies that aims to meet these chal-
lenges are mobile methane detectors (Fox, Barchyn, Risk, 
Ravikumar, & Hugenholtz, 2019). Many new mobile sensor 
platforms have been developed in recent years that prom-
ise faster and more cost-effective methane leak detection. 
These have been shown to detect methane emissions at 
various spatial scales and detection thresholds. For exam-
ple, truck-based measurements in British Columbia have 
been used to better characterize facility-level and regional 
methane emissions (Atherton, et al., 2017). Several air-
craft- and helicopter-based measurement campaigns in 
the US and Canada have expanded our understanding 
of methane emissions and revealed widespread underre-
porting in official inventories (Englander, Brandt, Conley, 
Lyon, & Jackson, 2018; Lyon, Alvarez, Zavala-Araiza, Brandt, 
Jackson, & Hamburg, 2016; Conley, Franco, Faloona, Blake, 
Peischl, & Ryerson, 2016; Frankenberg, et al., 2016; Yuan, 
et al., 2015; Johnson, Tyner, Conley, Schwietzke, & Zavala-
Araiza, 2017). Recent studies have also demonstrated the 
use of UAVs to quantify methane emissions (Golston, et al., 
2018; Nathan, et al., 2015; Barchyn, et al., 2017). Satellite 
data are often used to assess regional and global scale 
methane emissions (Turner, Frankenberg, Wennberg, & 
Jacob, 2017; Jacob, et al., 2016). Despite promising initial 
results, there has been no systematic testing of mobile leak 
detection technologies for applications in LDAR programs. 
The “methane observation networks with innovative tech-
nology to obtain reductions” (MONITOR) program devel-
oped by ARPA-E (U.S. Advanced Research Projects Agency 
(ARPA-E), 2014) has performed the most comprehensive 
controlled test of new methane detection technologies 
based on specific cost and performance targets, although 
these technologies are largely designed for continuous 
stationary deployment. Similarly, the Methane Detectors 
Challenge organized by the EDF in partnership with 

industry tested continuous monitoring sources for meth-
ane leak detection (Southwest Research Institute, 2015).

In this paper, we report results from the Stanford/En vi-
ronmental Defense Fund (EDF) Mobile Monitoring 
Challenge (MMC). The MMC was an open study that called 
for participants to take part in a single-blind, independently 
administered controlled release study. Section 2 gives an 
overview of the MMC methods including selection process, 
participating technologies, and test scenarios. Section 3 
describes metrics used to assess the performance of the tech-
nologies. Section 4 provides results from each of the teams 
that participated in the MMC, and section 5 discusses the 
implications of this work to methane mitigation. Detailed 
test-related data and further analysis of team performance is 
provided in the supplementary information (S.I.).

2. Methods
2.1. Team selection
The MMC invited technologists to apply by submitting 
information on their organization, sensor technical speci-
fications, and commercial characteristics (see S.I. for appli-
cation form). The project website was advertised widely 
and remained open for applications for 65 days. The MMC 
received 25 applications from technologists based in 5 
countries. An industry advisory board including mem-
bers of major oil and gas companies was created to pro-
vide industry insights into desirable features of methane 
detection systems. Scientists and project managers from 
Stanford and EDF, as well as the industry advisory board, 
reviewed and scored the applications separately, then 
gathered in person to discuss the applications and select 
the final list of participants (see S.I. section 1 and Table 1). 
Selection criteria included scientific soundness, applica-
bility to oil and gas facilities, and path to commercializa-
tion. Eleven organizations developing 12 technologies 
were selected to participate in the MMC – these included 
3 truck-, 3 plane-, and 6 drone-based platforms. Due to 
technical and logistical challenges, two selected teams – 
Kairos Aerospace and Bluefield Technologies – did not par-
ticipate in the field trials. After selection, authors (A.P.R. 
and I.M.) conducted one-on-one phone interviews with 
the science team of each technology to understand tech-
nology features and limitations. Teams were then assigned 
to one of three testing weeks based on their self-reported 
methane detection limits. A summary of the technologies 
selected as part of this study is given in Table 1 (also see 
S.I. SM_Table 1 for technical specifications). The tests in 
this study represents an independent assessment of the 
performance of methane leak detection technologies as 
would be observed by a regulator or site operator. As such, 
the participating teams did not have any interaction with 
or knowledge of the scientific team’s analysis of their per-
formance after the field tests.

2.2. Test locations and controlled releases
Two test locations were chosen for the MMC. Two weeks 
of releases were performed at the Methane Emissions 
Technology Evaluation Center (METEC), a Department of 
Energy funded controlled release facility in Fort Collins, 
CO. Release rates of total gas (87% CH4, see S.I. section 2) at 
the METEC facility were in the 0–15 standard cubic feet per 
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hour (scfh) range (0–0.25 kg CH4/h). One week of releases 
were performed at a facility owned by  Rawhide Leasing 
near Sacramento, CA. Test rates at the  Sacramento facil-
ity spanned 0–1500 scfh (0–26 kg CH4/h). Not all releases 
could be performed at METEC because some teams 
reported emissions detection limits that were too large for 
the emissions capability for the equipment and permitting 
in place at METEC (see S.I. section 2).

Teams were grouped based on self-reported detection 
thresholds – grouping together teams with similar detec-
tion limits ensures that tests are not too facile (for exam-
ple, only leaks significantly larger than detection limits) 
nor too difficult (test leaks significantly smaller than 
detection limits). The final test dates and grouping are 
shown in S.I. All tests were conducted in a single blind 
fashion – only authors A.P.R, C.B., and A.R.B. were aware 
of the actual leak rates and saw leak rates during the test 
process. All technology teams and other members on 
the project did not have access to the test scenarios until 
after the tests were completed. Approximately 3 months 
after testing was completed, after all teams reported final 
results to Stanford scientists, the true leak rates were 
given to the teams for their own use in further technology 
development.

The blinding of the leakage results could in theory 
be broken by audible sound or odor from the emission 
point. Because of the low release volumes, no Stanford 
staff noted discernable noise of emission while touring 
sites. For safety reasons, both sites release odorized gas 
which contains mercaptan compounds. This resulted 
in frequent odors at both sites, which shifted with the 

winds and would be most detectable when the team 
members were downwind from the release point (either 
due to the team moving with the vehicle or due to wind 
shifts). Given the complexity of the release patterns, 
their frequent temporal changes (every 10 min) and pos-
sibility of multiple release points, we do not expect the 
odors to provide consistent patterns that could be used 
by teams to break the blind. Furthermore, real oil and 
gas facilities frequency have odors associated with non-
methane compounds in the raw gas, analogous to the 
test scenario here.

Methane Emissions Technology Evaluation Center 
(METEC), Fort Collins, CO. METEC is an ARPA-E funded 
controlled release test site for evaluating new methane 
emissions detection technologies (see Figure 1(a)). The 
site contains equipment typically found at natural gas 
production facilities such as wellheads, separators, and 
tank batteries, organized across 5 clusters of equipment 
analogous to well-pads (see S.I. section 2). The pads vary in 
complexity –two of the pads had 1 wellhead, 1 separator, 
and 1 tank each. Other pads had multiple equipment of 
the same group, such as 5 wellheads on pad 4. Each team 
was assigned a pad for initial testing and were rotated 
across pads periodically to ensure all teams tested on all 
pads. Each piece of equipment has multiple leak points 
fashioned out of 0.64 cm (¼ in.) diameter steel tubing – 
the tubing is well concealed to mimic realistic leak sources 
such as connectors and flanges. Natural gas (86–88 vol% 
methane, 8–10 vol% ethane, 2–4 vol% trace gases, with 
odorant) is sourced from a centrally located tank at 172 
bar (2500 psi), with flow controlled by a combination of 

Table 1: Summary of the technologies participating in the Stanford/EDF Mobile Monitoring Challenge. DOI: https://
doi.org/10.1525/elementa.373.t1

Company Platform 
Type

Sensor Type/Species 
 Measured

Survey Method Survey Speeda 

(mph)
Survey 

Height (m)

ABB/ULC Robot-
ics

Drone Cavity-enhanced laser absorption 
spectroscopy – Methane

Modified raster scan (wind 
responsive)

2–5 5–10 m

Advisian Helicopter Laser absorption spectroscopy – 
methane/ethane

Upwind/Downwind 
 transects with sample tube

2–5 15–20 m

Aeris 
 Technologies

Vehicle Laser absorption spectroscopy – 
methane, ethane, water-vapor

Fence-line around equip-
ment groups, facility

~10 1–2 m

Baker Hughes 
(GE)

Drone Laser absorption spectroscopy – 
methane

Concentric circles around 
equipment

~5 5–10 m

Ball Aerospace Plane Airborne differential LIDAR – 
methane

Fly-overs (multiple passes) ~115 ~1000 m

Heath 
 Consultants Inc.

Vehicle Off-axis integrated cavity output 
spectroscopy – methane, ethane

Fence-line around 
 equipment groups, facility

~10 ~1–2 m

Picarro Drone and 
Vehicle

Cavity ringdown spectroscopy – 
methane, ethane, water-vapor

Upwind/Downwind 
 transects

2–5 5–10 m

Seek Ops Inc. Drone Laser absorption spectroscopy – 
methane

Raster scan, with flux plane 
mapping

2–5 1–3 m

U Calgary Vehicle Open-path laser spectroscopy – 
methane

Fence-line and highway-
based screening

~10 (fence-line) 
30–50 (highway)

2–3 m

U Calgary and 
Ventus Geospatial

Drone 
(fixed-wing)

Open-path laser spectroscopy – 
methane

Multiple downwind plume 
transects

30–40 28–124 m

a Some technologies were limited in their speed due to speed-limits at the METEC test-site (10 mph).

https://doi.org/10.1525/elementa.373.t1
https://doi.org/10.1525/elementa.373.t1
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pressure regulators and choked-flow orifices fitted with 
flow meters. During these tests, flow rates ranged from 
0 to about 15 scfh. In addition, the site also included a 
3-axis sonic anemometer that collected 1 minute-aver-
aged meteorological data at ~3 m above the ground. The 
wind data from this instrument is later used to analyze 
the effect of intra-pad interference during testing (see S.I. 
section 5 and 6).

Rawhide Leasing Gas Yard, Sacramento, CA. 
Controlled release experiments at the Sacramento sites 
consisted of 3 individual sources separated by 30–60 m 
(see Figure 1(b), and S.I. section 2). The sources consisted 
of a 2 m elevated stack of 2.54 cm diameter with test flow 
rates ranging from 50 scfh (0.87 kg CH4/h) to about 1500 
scfh (26 kg CH4/h). Each of the sources were individually 
metered using a Sierra Instruments QuadraTherm 740i 
thermal mass flow meters with an accuracy of ±0.75% of 
full-scale reading. Natural gas (91 vol% methane, 6 vol% 
ethane, 3 vol% trace gases) was sourced from a pressur-
ized tank at 2500 psi and stepped down to 50 psi with 
a regulator before passing through the flow meters. In 
addition to flow rates, the mass flow meters also moni-
tored gas temperature along the line. Because over 90% 
of the flow rates were relatively small, being lower than 
400 scfh (<7 kg CH4/h), we did not experience issues with 
Joule Thompson cooling effect (Maric, 2005). To allow for 
effective plume development through the atmosphere 
for aerial detection, leaks tested at this facility included 
a 3-minute buffer zone before and after each test period. 
The pre-test buffer allows the plume to develop while 
the post-test buffer lets the plume clear the area before 
the next test to avoid plume-overlap interference. This 
test site had other methane emissions not part of the 
controlled release test that were picked up by the tech-
nologies tested here (red circle in Figure 1b). The teams 
performed appropriate analysis to remove the effect of 
the co-located emissions whenever possible.

Test scenarios. We developed a series of test proto-
cols of increasing complexity to assess the performance 
of mobile leak detection technologies. These tests were 
designed to assess the ability of technologies to locate 
and detect leaks, quantify flow rates, resolve multiple 
leaks that are closely spaced, and do it all within a speci-
fied time limit. The test protocols were similar at METEC 
and Sacramento test locations but varied in complexity 
(see S.I. section 3 and SM_Table 3). The teams could use 
as little or as much time as needed within the maximum 
allotted time for each test. We chose not to time individual 
teams separately and instead opted for “maximum time 
allowed” for two reasons: (a) vehicle speeds at both test 
sites were limited to 10 mph, artificially impacting meas-
urement time for trucks, and (b) test sites are not the same 
as actively producing well sites and therefore, measure-
ment times here might not be representative of field per-
formance. While some teams stopped after detecting the 
leak within 2–4 minutes of a timed test, other teams used 
the entire test duration to improve their localization and 
quantification precision.

As multiple teams were measuring leaks simultaneously 
at METEC, study author (A.P.R.) worked in real-time to 
adjust leak locations across the 5 pads to minimize inter-
ference between pads. Leaks were preferentially placed 
downwind of non-leaks to minimize the amount of meth-
ane blowing from leaking sites to non-leaking sites. In 
addition, participants could drive between leak locations 
on different pads to sample both upwind and downwind 
methane data. Real-time monitoring of wind conditions 
by METEC personnel were used to assign leak configu-
rations across the five pads for each test scenario that 
would minimize interference. Because teams rotated, and 
wind conditions changed, each team was given a mix of 
leak and non-leak observations (generally 50% leaks and 
50% non-leaks). In S.I. (section 5 and 6) we present results 
from cleaning reported data of possible interference, but 

Figure 1: Google Earth image of Stanford/EDF Mobile Monitoring Challenge test locations. (a) METEC facility in 
Fort Collins, CO showing the pad configurations 1 through 5 and the staging area, (b) Rawhide Leasing facility near 
Sacramento, CA showing the approximate leak locations denoted 1, 2, and 3. The red circle shows the location of an 
anomalous non-test intermittent methane source. DOI: https://doi.org/10.1525/elementa.373.f1

https://doi.org/10.1525/elementa.373.f1
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present baseline results below. This is done by excluding 
any test scenarios that had a reasonable possibility of inter-
ference from upwind emission sources (see S.I.  section 5 
for more details on exclusion criteria). To be clear, interfer-
ence is likely at oil and gas facilities either due to co-located 
emissions from the same pad or downwind emissions from 
a different pad. Whether this impacts technology perfor-
mance is important to understanding the robustness of the 
algorithms used by the technologies to interpret raw data.

2.3. Performance metrics
A set of common metrics were developed to account for 
the variety in the sensors used, mobile platforms, survey 
protocols, analysis algorithms, and reporting parameters. 
These metrics included – (a) leak detection probability, (b) 
detection and localization, and (c) quantification accuracy. 
These are briefly described below.

Leak detection probability: Leak detection probability 
varies as a function of leak size for each technology. Leak 
detection probabilities are critical inputs to natural gas 
field simulators such as the Fugitive Emissions Abatement 
Simulation Toolkit (FEAST) that can help compare new 
detection technologies with established methods (Kemp, 
Ravikumar, & Brandt, 2016). Furthermore, developing 
estimates of detection threshold will assist in direct com-
parisons with currently used OGI technologies such as 
the FLIR GF-320 cameras. In this study, for technologies 
tested at METEC, we group leak sizes into 5 bins: <1, 1–3, 
3–5, 5–8, and >8 scfh, and determine the fraction of test 
scenarios in each bin that was detected. For technologies 
tested in Sacramento, CA, the bin sizes were: <150, 150–
300, 300–450, 450–600, and >600 scfh. All test scenarios 
of both leaks and non-leaks (zero tests) are combined into 
a true/false matrix chart. Four results are possible – a true 
positive (TP) result is recorded when a team correctly iden-
tifies an actual leak; a true negative (TN) occurs when a 
team correctly identifies a zero-leak test as not containing 
a leak; a false positive (FP) occurs when a team mis-identi-
fies a zero-leak scenario as a leak; and a false negative (FN) 
result occurs when a team wrongly characterizes a leak as 
a zero-leak scenario.

Detection and localization: TP results are grouped 
into three levels of localization accuracy – level 1, 2, and 
3. While some teams reported GPS coordinates that would 
make exact displacement calculations between actual and 
measured leak locations possible (i.e., m of offset between 
expected and actual location), numerous teams specified 
the equipment type or specific piece of equipment where 
emissions were detected. We chose this three-level metric 
to harmonize the different types of location information 
reported by the teams. All three levels of leak localization 
will require a secondary inspection to identify the leaking 
component or the correct leaking equipment for further 
repair.

Level-1: The team correctly identifies the leaking equip-
ment. In scenarios with multiple equipment of the same 
group (e.g., 5 wellheads), the teams should also have iden-
tified the correct equipment number in that group. This 
indicates equipment-level attribution ability – for exam-
ple, a team correctly reporting a leak on wellhead 4 on 
Pad 4, and corresponds to location accuracy within ~1–4 

m. Although the correct equipment has been identified in 
Level-1 type leaks, a repair crew may still require a method 
like handheld Method-21, OGI, or bubble test to identify 
the leaking component.

Level-2: The team correctly identifies the leak equip-
ment group but does not identify (or misidentifies) the 
equipment number when multiple equipment of the same 
group is present. For example, a team reporting a leak on 
wellhead 2 on Pad 4, when wellhead 4 was the actual leak 
location. Level-2 detection signifies some attributional 
ability, with effectiveness determined by the spatial density 
of equipment as well as resolution capabilities of the tech-
nology. Level-2 detection corresponds to location accuracy 
within ~4–10 m. There were no level-2 type leaks at the 
Sacramento test site because it contained only 3 isolated 
leak sources and did not have any group sources present. 
All tests results from the Sacramento site were identified 
as Level-1 or Level-3 detects. A Level-2 detection requires 
the operator to first identify the leaking equipment and 
component using a Method-21 or OGI-based sensor before 
repairs.

Level-3: The team correctly identifies a leak, but misiden-
tifies the equipment group – for example, a team reporting 
a leak on separator 2 on Pad 4, when wellhead 4 on Pad 4 
was the actual leak location. Teams that did not report any 
specific location data were automatically assigned Level 3 
detection. This level translates to pad-level detection ability 
(~10+ m) and can be considered as a proxy for screening 
type technologies. A secondary ground team with a hand-
held device would be required to identify specific leak loca-
tion before repairs can occur.

Finally, we also analyze results across equipment type – 
wellheads, separators, and tanks at METEC, and sources 
1, 2, and 3 in California. This will show differences in per-
formance that are affected by the height of the leaking 
equipment, a critical metric for truck and drone-based 
systems.

Quantification: Teams were asked to quantify emis-
sions and report estimated flow rates for a subset of the 
test scenarios. Some teams also quantified emissions in 
scenarios where it was not required, and these results are 
scored as well. Quantification performance is shown as a 
parity chart between actual and estimated leak rates, with 
error bars if reported by teams. The best-fit linear regres-
sion between measured and actual volumes and the 95% 
confidence interval around the slope is reported.

We choose the charitable interpretation of reported data 
in the case of ambiguity. For example, consider a scenario 
where we tested detection and quantification of 2 closely 
spaced leaks on a separator group, and the team reported 
one quantification measurement for a separator leak with-
out specifying the number of leaks. We interpreted this 
result as the team ‘detecting’ both leaks without resolv-
ing leak equipment, resulting in 2 level-2 detections. 
Furthermore, the quantification result would be com-
pared to the combined flux rate of both leaks.

3. Results of the Mobile Monitoring Challenge
This section describes detailed results for participating 
team. Team performance is presented in alphabetical order. 
A few caveats should be noted:
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a.  The sample sizes in different tests varies across 
teams because of the random nature of assigning 
test scenarios to teams, varying wind directions, ro-
bustness of technologies to high winds, and differ-
ences in preparation time across the technologies.

b.  The performance of all technologies is affected by 
weather conditions to varying degrees. We present 
data below from all test scenarios, irrespective of 
weather conditions. S.I. contains detailed analysis of 
team performance as a function of inter-pad inter-
ference.

c.  The suitability of a given technology for methane 
leak detection depends not only on the performance 
of the technologies themselves, but also on param-
eters such as facility type, and infrastructure density.

3.1. ABB/ULC Robotics
ABB deployed a UAV-mounted methane-only sensor 
based on cavity enhanced laser absorption spectroscopy. 
In addition to gas concentration values, the UAV collected 
GPS coordinates and wind speed using an on-board ane-
mometer.

Figure 2(a) shows the binary detection results of the 
ABB system. TP rate is 77% (n = 43 of 56), all at level-3 
localization, indicating detection effectiveness at the pad 
level. The average leak rate of the 18 (23%) FN indications 
was 2.4 scfh. FP rate is 22% (n = 10 of 45). A majority of 
these false positive (60%) occurred when multiple leaks 
were tested, indicating potential issues with leak resolu-
tion algorithms.

Figure 2(b) shows the detection probability of the tech-
nology as a function of leak-size. Detection probability 
varies from <30% for leaks <1 scfh, to 100% for leaks >8 
scfh. The 53% detection probability for leaks smaller than 
3 scfh partially explains the average false negative rate of 
2.4 scfh. Re-testing of this technology only at higher leak 
rates would likely result in improved TP rates.

Figure 2(c) shows the quantification parity chart. The 
slope of the best-fit line was 0.025, indicating no cor-
relation with the actual leak rate (R2 = 0.01, Pearson’s 
ρ = 0.02). The average difference between the actual 

and measured leak rate was +2.8 scfh (95% C.I. [1.1, 4.5], 
n = 28), This underestimation was especially severe for 
leaks larger than 5 scfh, with a mean actual leak rate of 
7.4 scfh, and the corresponding average measured leak 
rate being 3.1 scfh.

3.2. Advisian (Worley Parsons)
Advisian technology employed a Vapor-55 helicopter UAV 
outfitted with a laser spectroscopy-based methane-ethane 
sensor. The sample inlet was suspended about 50 ft below 
the helicopter through an inlet tube pulled behind the 
helicopter. In addition to gas concentration, the UAV col-
lects GPS coordinates and meteorological data. This team 
provided two results for each test scenario – one that was 
immediately available based on 3-dimensional plots of 
concentration, and the other based on off-site data analy-
sis performed on data uploaded to the cloud. Below we 
have used the off-site analysis results.

Figure 3(a) shows the TP rate for detection was 94% 
(n = 36), with the level-1, level-2, and level-3 localization at 
47%, 25%, and 22%, respectively. The nearly 50% level-1 
localization demonstrates equipment-level leak detection 
capability. However, 10 of the 17 level-2 and level-3 leak 
detections occurred during the multiple leaks per pad 
test scenarios, indicating challenges with distinguishing 
closely-spaced leaks. Across equipment types, the leak 
detection effectiveness was 90% (n = 10) for wellheads, 
100% (n = 24) for separators, and 50% (n = 2) for tanks. 
The difference between tanks and wellheads/separators 
was not statistically significant due to the small sample 
size. The FP rate was 7% (n = 2 out of 29).

Figure 3(b) shows that the 100% detection probability 
cut-off is approximately 3 scfh.

Figure 3(c) shows the quantification parity chart for 
the sensor, with the slope of best-fit linear regression 
being 2.7. The error bars shown were directly reported 
by the team. The average difference between the actual 
and measured leak rate is –12.7 scfh (95% C.I. [–20.6, 
–4.8], n = 33), representing an average overestimation by 
approximately 3.5 times the average controlled release 
rate (3.64 scfh).

Figure 2: Performance results of ABB (ASEA Brown Boveri)/ULC Robotics in the Stanford/EDF Mobile 
 Monitoring Challenge. (a) Binary detection characteristics of the technology, disaggregated by the level of true 
positive detection, (b) Leak detection probability across different leak size range, and (c) quantification parity chart 
between actual and measured leak rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). 
DOI: https://doi.org/10.1525/elementa.373.f2
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3.3. Aeris Technologies
Aeris Technologies uses a mid-infrared laser spectroscopy-
based sensor mounted on a ground vehicle to detect 
methane, ethane, and water-vapor. In addition to gas con-
centrations, the system also measures meteorological data 
and GPS coordinates. 

Figure 4(a) shows the detection characteristics for 
Aeris. Out of 52 total leaks, TP rate was 88%, with 50% 
at level-1, 15% at level-2, and 23% at level-3 localiza-
tion. Six leaks were misidentified as zero leaks (FN), 
with mean FN leak rate of 1.5 scfh. Three of the six FN 
observations occurred during the multiple leaks per 
pad test, indicating challenges in spatial resolution of 
closely located emissions sources. Notably, there is a 
difference in detection effectiveness between equip-
ment types: wellheads (TP = 87%, n = 15) and separa-
tors (TP = 97%, n = 32) had very high success rates, 
while, tanks had lower success rates (TP = 40%, n = 5). 
This suggest a possible challenge for measuring from 
taller equipment from a vehicle-based sensor and 
would point to the need for a wider sampling path to 

allow more time for groundward dispersion of higher  
leaks.

Out of the 48 zero leaks tested, the FP rate was 15% 
(n = 7). Of the FP detections quantified (5/7), the aver-
age quantified FP leak rate was 0.5 scfh – over 19 times 
smaller than average measured leak rate of 9.6 scfh for 
actual leaks. This indicates that false positives were an 
issue near the detection limits of the technology, as seen 
in the detection probability curve Figure 4(b).

Figure 4(c) shows the quantification parity chart 
for Aeris. The slope of the best-fit regression line is 
3, indicating overestimation. The average difference 
between the actual and measured rate was –6.5 scfh, 
with the 95% C.I. ranging from –10.2 to –2.3 scfh. Five 
large overestimates (>30 scfh) in quantification are not 
shown in Figure 4(c) for clarity. However, these data 
points are included in our statistical analysis and are 
not arbitrarily discarded while calculating the R2 and ρ 
coefficients. Removing these from the statistical ana-
lyzes increases R2 and ρ coefficients to 0.32 and 0.55, 
respectively.

Figure 4: Performance results of Aeris Technologies in the Stanford/EDF Mobile Monitoring Challenge. 
(a) Binary detection characteristics of the technology, disaggregated by the level of true positive detection, (b) Leak 
detection probability across different leak size range, and (c) quantification parity chart between actual and measured 
leak rates. 5 large over-estimates in the data are not shown in (c) for clarity but are included in calculating  best-fit 
lines. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). DOI: https://doi.org/10.1525/
elementa.373.f4

Leaks No Leaks0

20

40

60

80

100

<1 1-3 3-5 5-8 >8
Leak Size (scfh)

0

20

40

60

80

100

0 5 10 15 20 25
Actual Leak Rate (scfh)

5

10

15

20

25

Te
st

s 
(%

) TP: Level 3
(n = 12)

FN (n = 6)
FN μ   =1.5 scfh

TP: Level 2
(n = 8)

TP: Level 1
(n = 26)

FP 
(n = 7)

TN 
(n = 41)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y 
(%

)

16

11
9 2

10
R

2 = 0.25
 ρ = 0.49 1:1 line

M
ea

su
re

d 
Le

ak
 R

at
e 

(s
cf

h) Aeris

(c) (a) (b) 

5 over-estimates
not shown

Figure 3: Performance results of Advisian (Worley Parsons Group) in the Stanford/EDF Mobile Monitoring 
Challenge. (a) Binary detection characteristics of the technology, disaggregated by the level of true positive detec-
tion, (b) Leak detection probability across different leak size range, and (c) quantification parity chart between actual 
and measured leak rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). DOI: https://doi.
org/10.1525/elementa.373.f3
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3.4. Baker Hughes (GE)
BHGE operated an UAV-mounted methane-only sensor 
based on absorption spectroscopy. The sensor collects sin-
gle point measurements of methane concentration at 2 Hz 
frequency along with location information through an on-
board GPS. Leaks are analyzed separately by combining 
with weather parameters from the ground  anemometer 
data made available to the team.

Figure 5(a) shows the detection characteristics of 
the UAV-mounted sensor. TP rate is 68% (n = 39 of 57). 
Approximately half the detected leaks – 20 out of 39 – 
were level-3 localization, indicating pad-level attribution. 
Mean FN leak rate is 2.5 scfh, which is lower than the 
6 scfh detection limit as described by the team prior to 
testing. FP rate of 71% (32 of 45) is high, indicating a need 
to improve processing algorithms to reduce false positive 
detection.

Figure 5(b) shows the detection probability charts for 
the technology. For leaks below 3 scfh, the detection prob-
ability is about 50%, aligning with team reported detection 
limits. BHGE reliably detected leaks greater than 8 scfh 
with 100% detection probability.

Figure 5(c) shows the quantification parity chart, 
 Best-fit regression line has slope of 0.05, indicating under-
estimation and lack of sensitivity to leak size. The mean 
measured leak rate was 1.2 scfh, corresponding to an aver-
age error of +2.2 scfh (95% C.I. [1.4, 3.0], n = 57) – the 
measured rates were only 35% of the actual leak rates.

3.5. Ball Aerospace
Ball Aerospace tested a methane-only sensor based on 
airborne differential absorption LIDAR mounted on a 
single-engine Cessna T206. The sensor samples data at 10 
kHz and collects path-integrated methane concentration 
data in a ‘push-broom’ approach with a spatial resolution 
of about 2 m on the ground. Meteorological data from 
nearby ground weather station is integrated with  sensor 
data to develop quantitative flux estimates. The airplane 
flew at 2800 ft altitude, and the controlled release tests 
were conducted at the Sacramento, CA site between 
21–25 May 2018.

Figure 6(a) shows the detection characteristics of the 
Ball aerospace team. Out of 50 total leaks that were tested, 
TP rate is 74% at level-1 localization, demonstrating the 

Figure 5: Performance results of Baker Hughes (General Electric) (BHGE) in the Stanford/EDF Mobile 
 Monitoring Challenge. (a) Binary detection characteristics of the technology, disaggregated by the level of true 
positive detection, (b) Leak detection probability across different leak size range, and (c) quantification parity chart 
between actual and measured leak rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). 
DOI: https://doi.org/10.1525/elementa.373.f5

Figure 6: Performance results of Ball Aerospace in the Stanford/EDF Mobile Monitoring Challenge. (a) Binary 
detection characteristics of the technology, disaggregated by the level of true positive detection, (b) Leak detection 
probability across different leak size range, and (c) quantification parity chart between actual and measured leak 
rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). DOI: https://doi.org/10.1525/
elementa.373.f6
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source attribution ability of the aircraft-mounted sensor. 
FN rate is 26% with mean FN rate of 190 scfh. This tech-
nology did not detect any FPs (n = 17). While the detection 
effectiveness at source 1 (west) and source 2 (south) were 
88% and 80%, respectively, the effectiveness at source 3 
(east) was only 46% (n = 13). The reason for this discrep-
ancy is not well understood.

The detection probability plot (see Figure 6(b)) shows 
a threshold around 450 scfh. Leaks greater than 450 scfh 
had 100% probability of detection, while leaks smaller 
than 450 scfh had an average detection probability of 
about 64%. The lower detection effectiveness for leaks 
smaller than 200 scfh also explains the observed mean FN 
rate (190 scfh, see Figure 6(a)).

Figure 6(c) shows the quantification parity chart, with 
a best-fit linear regression slope of 0.32. The error bars are 
based on the teams’ reports. The average error between 
actual and measured leak rate was +58 scfh (95% C.I. 
[–79, 196], n = 32), indicating an underestimation of the 
actual leak rate by ~15%. However, the confidence inter-
val for the average error includes 0.

The effectiveness of airplane-based detection is depend-
ent on the number of passes over the facility. In this study, 
the Ball Aerospace team averaged 4 passes during the 
10-minute tests and 7 passes during the 15-minute tests 
that required quantification in addition to detection.

3.6. Heath Consultants Inc.
Heath Consultants Inc. tested the Mobile Guard – a vehi-
cle-based leak detection system – that uses off-axis inte-
grated cavity output spectroscopy to detect methane and 
ethane emissions. In addition to the analyzer, the truck 
also collected GPS and weather data using an on-board 
anemometer.

Figure 7(a) shows the detection characteristics of the 
truck-based measurement system. Out of a total of 92 
leaks tested, Heath identified 86 at least partially (levels 
1,2, or 3), resulting in a FN rate of 6.5%. The average leak 
rate for the false negative tests was 1.8 scfh. 75 of the 86 
detected leaks, or 82%, were in the level 1 or level 2 cat-
egory – the technology identified the correct equipment 

group for the leak source the vast majority of the time. 
In addition to the true positive results, Heath had a false 
positive rate of 25.6%, with 11 of the 43 zeros incorrectly 
identified as leaks. This rate was affected by the unusu-
ally windy conditions during the week of testing (see S.I. 
 section 5). The mean wind speed during testing was over 
13 mph, affecting detection and complicating analysis of 
raw concentration data. 9 out of 11 false positive detec-
tions for Heath occurred during the multiple leaks per pad 
test scenario, indicating potential challenges in resolving 
multiple leak sources from spatial concentration data.

Figure 7(b) shows the detection probability curves for 
Heath as a function of leak size range. This technology has 
high sensitivity, detecting leaks that are smaller than 1 
scfh with approximately 90% success rate. No statistically 
significant difference in ability to detect leaks across dif-
ferent equipment types exists.

Figure 7(c) shows the quantification parity chart in clud-
ing both single-leak and multi-leak measurements. The 
slope of the best-fit linear regression line is 0.44 with larger 
leaks generally underestimated. The overall  mis-estimation 
was skewed negatively (toward underestimation) but not 
statistically significant from 0 (95% C.I. [–1.4, 0.23], 
n = 23).

3.7. Picarro Inc.
Picarro tested a hybrid drone and vehicle-based methane, 
ethane, and water-vapor sensor based on optical absorp-
tion using cavity ringdown spectroscopy. The sensor was 
deployed on the ground in a vehicle while the gas inlet for 
the system was mounted on an unmanned aerial vehicle 
(UAV). This inlet is tethered to the ground-based sensor 
using a 150 ft long inlet tube. In addition to pollutant con-
centrations, the sensor also measured wind speed and GPS 
coordinates at approximately 1 Hz frequency.

Figure 8(a) shows the detection characteristics of 
Picarro’s drone-based system. A TP rate of 92% (59/64) 
was achieved at level-2 and level-3 localization, demon-
strating detection effectiveness at the pad-level. The aver-
age leak rate of the FN measurements – 5 out of the 64 
tests – was 3.2 scfh. All tank-related leaks were correctly 

Figure 7: Performance results of Heath Consultants in the Stanford/EDF Mobile Monitoring Challenge. 
(a) Binary detection characteristics of the technology, disaggregated by the level of true positive detection, (b) Leak 
detection probability across different leak size range; the numbers on bars refer to sample size in each bin, and (c) 
quantification parity chart between actual and measured leak rates. (TP: True Positive, FP: False Positive, TN: True 
Negative, FN: False Negative). DOI: https://doi.org/10.1525/elementa.373.f7
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identified (n = 6), showing success with leaks at height 
(difference is not statistically significant due to small sam-
ple size). A FP rate of 39% was found (9/23).

The level-3 leaks, all identified during the multiple leaks 
per pad test, point to limited ability to attribute sources at 
the equipment-group level. However, it was also during the 
multiple leaks per pad test that this technology tested 8 of 
the 9 false positive results in this study. This performance 
indicates suitability at screening pad-level emissions, while 
also demonstrating the need for improvement in algo-
rithms for source attribution under complex emissions sce-
narios. The UAV system was not tested on one of the days 
(April 11th, 2018) because of winds gusting over 23 mph.

Figure 8(b) shows the detection probability curve for 
Picarro. There is no statistically significant difference in 
detection between the different leak rates. A high leak 
detection probability at small leak rates (<1 scfh) points 
to the underlying sensor’s high sensitivity. Figure 8(c) 
shows the quantification parity for a sample size of 86 
leaks (all leaks were quantified by Picarro). The error bars 
in Figure 8(c) are 70% confidence intervals as reported 
by Picarro. The slope of the regression line is 0.36, driven 

by underestimation of leaks at larger leak rates (>6 scfh), 
while smaller leaks are generally overestimated. The aver-
age difference between the actual leak rate and the meas-
ured leak rate was –0.89 scfh, with a 95% confidence 
interval between –1.8 scfh and 0.01 scfh.

3.8. Seek Ops Inc.
Seek Ops Inc. tested a methane-only, continuous in-situ 
monitoring sensor based on laser absorption spectros-
copy mounted on a UAV platform. The drone measured 
methane concentration and GPS coordinates, while wind 
is measured using a custom ground station on the site 
erected by the team.

Figure 9(a) shows the detection characteristics of the 
drone-mounted sensor. This technology had a 100% TP 
rate (n = 63), with a majority of the leaks (68%) detected 
at the level-1 scenario. The remaining emissions were 
equally split (16% each) between level-2 and level-3 detec-
tion scenarios. Most level-3 scenario for Seek Ops occurred 
on pads 1 and 2, where the specific leak location was 
ambiguous because of the heat map of emission covering 
more than one equipment. These aggregate statistics also 

Figure 9: Performance results of Seek Ops Inc. in the Stanford/EDF Mobile Monitoring Challenge. (a) Binary 
detection characteristics of the technology, disaggregated by the level of true positive detection, (b) Leak detection 
probability across different leak size range, and (c) quantification parity chart between actual and measured leak 
rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). DOI: https://doi.org/10.1525/
elementa.373.f9

Figure 8: Performance results of Picarro Inc. in the Stanford/EDF Mobile Monitoring Challenge. (a) Binary 
detection characteristics of the technology, disaggregated by the level of true positive detection, (b) Leak detection 
probability across different leak size range, and (c) quantification parity chart between actual and measured leak 
rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). DOI: https://doi.org/10.1525/
elementa.373.f8
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include results from the multiple leaks per pad scenarios, 
demonstrating the ability of Seek Ops algorithms to dis-
tinguish multiple closely-spaced emissions sources. The 
team did not have any FP detection. Figure 9(b) shows 
detection of 100% in all leak classes.

Figure 9(c) shows the quantification parity chart, with 
the error bars as directly reported by Seek Ops. The slope 
of the regression line is 1.27, suggesting overestimation 
of measured flux rates. The average difference between 
actual and measured leak rates is –2.6 scfh, with a 95% 
confidence interval between –4.3 and –0.8 scfh (n = 63), 
suggesting intercept (rather than slope) bias towards over-
estimation of leak rates.

3.9. University of Calgary (UC)
The University of Calgary (UC) team deployed two dif-
ferent technologies – a vehicle-based methane-only 
sensor, and a fixed-wing drone-based sensor. Both these 
technologies were tested between May 21–25 2018 near 
 Sacramento, CA. We only include results from the truck-
based system here, due to small number of flights with 
the fixed-wing drone. Results from the drone are pre-
sented in S.I. section 4.

The vehicle-based platform is fitted with a roof-mounted, 
methane-only open-path laser absorption sensor (LICOR 
LI-7700) that works on the principle of wavelength mod-
ulation spectroscopy, a 3D anemometer, and a vehicle 
position and orientation system. The platform, designed 
for both fence-line type measurements as well as fast-
screening mode from public roads, collects data from all 
on-board instruments at 10 Hz.

Figure 10(a) shows the detection characteristics of the 
UC truck-based platform. TP rate is 94%, with n = 55 leaks 
(71%) at level-1 localization, and n = 18 leaks (23%) at 
level-3 localization. 15 of the 18 level-3 detects were from 
either source 1 (west) or source 2 (south) – interference 
from the non-test methane emissions from the site under 
appropriate wind conditions could have contributed to 
mis-identification. Mean FN flow rate is 121 scfh. A high 
FP rate (60%) could partly be due to interfering emissions 
sources from the front of the site.

Figure 10(b) shows the detection probability curve as 
a function of leak size. Leaks above 450 scfh have a 100% 
detection probability, even though all leaks are detected 
at the 80% level or higher. The lowest detection probabil-
ity (82%) for leaks less than 150 scfh is consistent with the 
average FN flow rate of 121 scfh. The differences in detec-
tion probability across the range of leak sizes considered 
are not statistically significant.

Figure 10(c) shows the quantification parity chart 
of the technology, with the slope of the best-fit regres-
sion line being 0.4, indicating some underestimation of 
reported emissions. One reason for the underreporting 
could be attributed to data processing – the team sub-
tracted the influence of the non-test emission at site by 
estimating its leak rate. However, the intermittent nature 
of the non-test leak could have resulted in an overestima-
tion (instantaneous rate > average rate) thereby underesti-
mating test scenario emissions. The average error between 
the actual and measured leak rate was 185 scfh (95% C.I. 
[137, 234], n = 73), confirming the over-estimation seen in 
the best-fit regression line.

4. Discussion
Table 2 summarizes the performance of these technolo-
gies along parameters chosen to highlight the collective 
capabilities of mobile systems as well as potential chal-
lenges ahead. All technologies are effective at detecting 
leaks, with 8 of the 9 tested technologies demonstrating 
a true positive leak rate of at least 75%. More importantly, 
5 of 9 technologies show a near perfect true positive 
detection rate of 90% or higher – this shows the ability 
of technologies to detect leaks as small as 1 scfh. Despite 
this, the source attribution capability – denoted by the 
fraction of leaks detected at level-1 or level-2 (equip-
ment-group level attribution) – varies significantly from 
0% to 84%. Technologies such as ABB/ULC  Robotics, 
Picarro, and BHGE largely confine their detection to pad-
level attribution – leak repair and mitigation will require 
a complementary technology to identify emitting equip-
ment and component. For technologies with high level-1 
and level-2 detection capabilities, an OGI or similar 

Figure 10: Performance results of University of Calgary (Truck) in the Stanford/EDF Mobile Monitoring 
 Challenge. (a) Binary detection characteristics of the technology, disaggregated by the level of true positive detec-
tion, (b) Leak detection probability across different leak size range, and (c) quantification parity chart between actual 
and measured leak rates. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative). DOI: https://doi.
org/10.1525/elementa.373.f10
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 technology may still be required to identify the leaking 
component and initiate repairs.

The false positive rate is an important indication of a 
system’s ability to differentiate methane signal from 
noise. Methane is often present at elevated concentra-
tions at oil and gas facilities, and the ability to distinguish 
natural variability from an emissions source is critical to 
effective mitigation. This is especially important for tech-
nologies that have small leak detection thresholds. Three 
technologies in this study had false positives rates lower 
than 10%, four more in the 15–40% range, and two tech-
nologies with false positive rates greater 50%. The high 
false positive rate in some of the technologies occurred 
despite a high leak detection rate. This indicates that sen-
sor algorithms that process raw concentration data play 
an important role in the success and failure rate of these 
technologies. A combination of high sensitivity and inef-
fective algorithms can lead to high false positive rates 
because of an inability to clearly distinguish leak signal 
from background methane noise. Technologists should 
carefully consider the needs of the application – trade-offs 
between high sensitivity, high false positives, and quan-
tification may be acceptable in some applications (rapid 
detection of ‘super-emitters’), but unacceptable in others 
(quantifying mitigation potential, inventory). For technol-
ogies tested at the California site, the presence of non-test 
methane emissions from the site could have contributed 
to the high false positive rate for the University of Calgary 
vehicle-based technology.

All the technologies tested at METEC had detection lim-
its lower than 10 scfh – in Table 2, we define the detection 

limit as the leak rate beyond which the probability of 
detection is 100% under test conditions. Four of the tech-
nologies had a detection limit of at least 8 scfh, while two 
others were in the 3–8 scfh range. Because SeekOps iden-
tified all the leaks, we estimate that their detection limit is 
lower than 1 scfh. These numbers are comparable to the 
detection limits of OGI-based leak detection under ideal 
weather conditions (Ravikumar, Wang, McGuire, Bell, 
Zimmerle, & Brandt, 2018). Ball Aerospace’s aerial system 
and University of Calgary’s truck-based screening system 
have detection limits in the 450–600 scfh range – these 
rates are comparable to the 90th percentile of component-
level emission rates found at oil and gas facilities (Brandt, 
Heath, & Cooley, 2016).

In general, quantification performance needs improve-
ment. Most quantification efforts had appreciable errors 
in average leak rate or slope (or both). This is due to a 
fundamental issue: quantification of leakage rates from 
detected concentrations in downwind plumes is a chal-
lenging “inverse problem” that is a well-known  hurdle in 
a number of scientific fields. Furthermore, typical plume 
inversion algorithms may require longer averaging time 
than the economics of mobile solutions would support. 
Some quantification results were sufficiently correlated 
with actual leak sizes that the resulting size estimates 
might be useful in a simple 3-class binning approach (i.e., 
small/medium/large to prioritize leak fixes). Table 2 esti-
mates the accuracy of quantification using two metrics – 
one, fraction of tests where measured emissions rates are 
between 0.5x and 2x of the actual emission rate, and two, 
fraction of tests where measured emission rates are within 

Table 2: Summary of performance of the 9 technologies tested in the Stanford/EDF Mobile Monitoring Challenge. DOI: 
https://doi.org/10.1525/elementa.373.t2

Technology Technology 
Type

Detection 
Effectiveness

False 
 Positive 
Rate (%)

Detection 
Limit (leak rate 
where detection 

 probability is 
100%, scfh)

Quantification Accuracy 
( , )% Measured

Actual tests

True  Positive 
(%, all levels)

True Positive 
(Levels 1–2(%))

0.5 – 2x* 0.1 – 10x* 
O(M)

ABB/ULC 
 Robotics

Drone 77 0 22 ≥8 30 78

Advisian Drone 94 72 7 3–5 25 79

Aeris 
 Technologies

Truck 88 65 15 5–8 38 79

Baker 
Hughes (GE)

Drone 68 33 71 ≥8 24 54

Ball 
 Aerospace

Plane 76 76 0 450–600 53 83

Heath 
 Consultants

Truck 93 82 26 ≥8 48 95

Picarro Drone 
sampling

92 23 39 ≥8 45 92

Seek Ops Inc. Drone 100 84 0 ≤1 36 100

U. Calgary 
(Truck)

Truck 94 71 60 450–600 18 74

* Fraction of tests where the measured emission rates are within (a) 0.5–2 times, and (b) 0.1–10 times of the actual emission rate.
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an order of magnitude (0.1 – 10x) of the actual emission 
rate. Only Ball Aerospace estimated leaks within 0.5 – 2x 
of the actual leak rate in more than 50% of the tests. The 
overall performance on this metric ranged from a low of 
18% to a high of 53%. This performance improves when 
considering an order of magnitude accuracy level – 8 of 
the 9 technologies estimated leak sizes to within an order 
of magnitude of the actual leak rate in at least 74% of test 
scenarios. In particular, Seek Ops, Heath Technologies Inc., 
and Picarro Inc. achieved an order of magnitude accuracy 
in 100%, 95%, and 92% of test scenarios, respectively. In 
general, the Pearson’s coefficient (ρ) was larger than the 
linear regression coefficient (R2), indicating that technolo-
gies are better at quantifying larger leaks compared to 
smaller leaks. Finally, the importance of quantification 
also depends on the application – rapid detection of large 
emissions sources for effective methane mitigation might 
not require accurate quantification.

Performance of the technologies are affected not only by 
inherent sensor capabilities but also factors such as environ-
mental conditions, survey protocol, and facility characteris-
tics. For example, technologies that use a suspended sample 
inlet (Advisian) or a tethered sample tube (Picarro Inc.) 
might face additional challenges in the presence of nearby 
power lines or taller equipment. An important source of 
error, given our test configuration, is inter-pad interference 
from wind-borne dispersion of leaks. To account for this, 
we analyzed the performance of teams tested at METEC 
under two scenarios – weak and strong interference (see 
S.I. section 5 and 6). These two analyzes sought to discard 
test results based on a set of criteria established to identify 
potential interference issues in leak detection. We found 
that under both weak and strong interference scenarios, 
the fraction of tests correctly identified (TPs and TNs) were 
not statistically different from base-case scenario where all 
tests were included. This suggests that whatever differences 
in performance that were observed between the teams did 
not arise from inter-pad interference.

Some technologies would be well served by re-testing 
at higher leak rates (>10 scfh). The combined testing for-
mat followed here requires supplying a range of leak sizes 
to satisfy multiple technologies at the same time. More 
detailed one-on-one testing could allow improved analysis 
of minimum detection rates and effectiveness. For exam-
ple, BHGE performed well in the class of leaks >8 scfh and 
could be re-tested with more samples in that regime. This 
is especially important considering that a recent study of 
emissions in the Marcellus shale found that the average 
emission rate at the pad-level was 5.5 kg/h, correspond-
ing to ~350 scfh (Caulton, et al., 2019). However, these 
are pad-level estimates, and component-level emissions 
can be significantly smaller – testing at the METEC facil-
ity between 0–15 scfh therefore provides a reasonable 
test of performance for technologies that detect emis-
sions component-level detection. Conversely, testing at 
the Sacramento test location with emission rates in the 
0–1500 scfh is well suited for technologies that detect 
aggregated pad-level emissions.

While no single technology can satisfy all the require-
ments for leak detection and quantification across the 

natural gas supply chain, the results demonstrated here 
provide regulators and the industry with a range of 
options. There are technologies with strengths in survey 
speed that are suitable for leak detection along inter-state 
transmission pipelines, while technologies with high pad-
level (but not equipment-level) detection effectiveness 
indicate potential use as a screening-technology to cover 
large areas. With potential improvements to algorithms 
that transform raw concentration data into actionable 
information, these technologies could become prominent 
tools to mitigate methane emissions.

A number of practicalities emerged in 3 weeks of test-
ing that are relevant to any attempt to extrapolate these 
results to field conditions. First: drone technologies tested 
in this study are still immature, resulting in labor inten-
sity, frequent battery recharge requirements, grounding 
due to winds, and substantial ground crew effort. Ground-
based systems like the truck-mounted Heath and Aeris 
technologies experienced few of these issues and so have 
practical advantages that are not represented in above 
tables. At the same time, drone-based systems can be 
effective in quantifying emissions from taller equipment 
and during calm atmospheric conditions where plumes 
do not disperse but accumulate around the leak source – 
these conditions pose difficulty for truck-based systems 
where the plume lofts into the atmosphere and do not 
intersect the truck-based sensor. Second, drone-based 
technologies required accommodations that may be dif-
ficult to implement in real-world surveys: Advisian and 
Picarro dangled sample tubes from drones that has the 
potential to get tangled with equipment or nearby power 
lines, while SeekOps had a ground technician dedicated 
to traffic management and avoiding collisions due to the 
low-flying technique. The employed deployment methods 
may cause practical difficulties in labor cost and survey 
time with usage of the technology but will hopefully be 
solved by technology development.

Even as this study provides the first controlled and inde-
pendent verification of the performance of mobile leak 
detection technologies, this is only one step in the road 
to demonstrating that these technologies will provide 
emissions reductions that are equivalent to traditional 
OGI-based methods. Demonstrating equivalence with OGI 
will require more testing and assessing the performance 
of these technologies under specific survey protocols 
(Ravikumar, & Brandt, 2017). Whether the emissions reduc-
tions from monthly truck-based screening surveys, for 
example, are equivalent to emissions reductions from semi-
annual OGI-based LDAR survey can be answered through a 
statistical simulations (for example, using the FEAST simu-
lation platform) (Kemp, Ravikumar, & Brandt, 2016) as well 
as pilot testing these technologies at oil and gas facilities 
with co-occurring OGI studies (Fox, et al., 2019). Clearly, the 
next frontier in mobile methane emissions mitigation is to 
develop standardized protocols to demonstrate technology 
equivalence for use across large geographic areas.

It is critical to remember that these results apply to 
the technologies that are in active development. Many of 
the systems tested here have undergone changes to both 
hardware and software since they were tested for this 
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study. It is a rapidly evolving field and stakeholders should 
always look for the most recent data to make decisions on 
deployment and regulatory acceptance.
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