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Abstract The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change
aims to keep global average temperature increases well below 2 °C of preindustrial levels in the Year 2100.
Vital to its success is achieving a decrease in the abundance of atmospheric methane (CH4), the second
most important anthropogenic greenhouse gas. If this reduction is to be achieved, individual nations must
make and meet reduction goals in their nationally determined contributions, with regular and
independently verifiable global stock taking. Targets for the Paris Agreement have been set, and now the
capability must follow to determine whether CH4 reductions are actually occurring. At present, however,
there are significant limitations in the ability of scientists to quantify CH4 emissions accurately at global and
national scales and to diagnose what mechanisms have altered trends in atmospheric mole fractions in
the past decades. For example, in 2007, mole fractions suddenly started rising globally after a decade of
almost no growth. More than a decade later, scientists are still debating the mechanisms behind this
increase. This study reviews the main approaches and limitations in our current capability to diagnose the
drivers of changes in atmospheric CH4 and, crucially, proposes ways to improve this capability in the coming
decade. Recommendations include the following: (i) improvements to process‐based models of the main
sectors of CH4 emissions—proposed developments call for the expansion of tropical wetland flux
measurements, bridging remote sensing products for improvedmeasurement of wetland area and dynamics,
expanding measurements of fossil fuel emissions at the facility and regional levels, expanding
country‐specific data on the composition of waste sent to landfill and the types of wastewater treatment
systems implemented, characterizing and representing temporal profiles of crop growing seasons,
implementing parameters related to ruminant emissions such as animal feed, and improving the detection
of small fires associated with agriculture and deforestation; (ii) improvements to measurements of CH4 mole
fraction and its isotopic variations—developments include greater vertical profiling at background sites,
expanding networks of dense urban measurements with a greater focus on relatively poor countries,
improving the precision of isotopic ratio measurements of 13CH4, CH3D,

14CH4, and clumped isotopes,
creating isotopic reference materials for international‐scale development, and expanding spatial and
temporal characterization of isotopic source signatures; and (iii) improvements to inverse modeling systems
to derive emissions from atmospheric measurements—advances are proposed in the areas of hydroxyl
radical quantification, in systematic uncertainty quantification through validation of chemical transport
models, in the use of source tracers for estimating sector‐level emissions, and in the development of time and
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space resolved national inventories. These and other recommendations are proposed for the major areas of
CH4 science with the aim of improving capability in the coming decade to quantify atmospheric CH4 budgets
on the scales necessary for the success of climate policies.

Plain Language Summary Methane is the second largest contributor to climate warming from
human activities since preindustrial times. Reducing human‐made emissions by half is a major
component of the 2015 Paris Agreement target to keep global temperature increases well below 2 °C. In
parallel to the methane emission reductions pledged by individual nations, new capabilities are needed to
determine independently whether these reductions are actually occurring and whether methane
concentrations in the atmosphere are changing for reasons that are clearly understood. At present
significant challenges limit the ability of scientists to identify the mechanisms causing changes in
atmospheric methane. This study reviews current and emerging tools in methane science and proposes
major advances needed in the coming decade to achieve this crucial capability. We recommend further
developing the models that simulate the processes behind methane emissions, improving atmospheric
measurements of methane and its major carbon and hydrogen isotopes, and advancing abilities to infer the
rates of methane being emitted and removed from the atmosphere from these measurements. The
improvements described here will play a major role in assessing emissions commitments as more cities,
states, and countries report methane emission inventories and commit to specific emission reduction targets.

1. The Role of Atmospheric CH4 in Achieving Global Climate Targets

Methane (CH4) is the second most important human‐made (“anthropogenic”) greenhouse gas after carbon
dioxide (CO2) and accounts for at least 25% of the anthropogenic radiative forcing of warming agents since
preindustrial times (including indirect effects due to atmospheric chemistry) (Etminan et al., 2016; Myhre
et al., 2013). In addition to its radiative properties, CH4 is a chemical precursor to tropospheric ozone forma-
tion, which causes air quality problems for both human and ecosystem health. Sources of CH4 to the atmo-
sphere are both natural and anthropogenic in origin. Current estimates of annual CH4 emissions range from
550–740 Tg/yr, depending on the methodology, with approximately 50–60% coming from anthropogenic
sources (Saunois et al., 2016).

Dry‐air atmospheric CH4 mole fraction describes the number of molecules of CH4 in a given number of
molecules of air after removal of water vapor. It is expressed in units of nanomoles per mole, which is abbre-
viated for simplicity as parts per billion (ppb). In the lower atmosphere, globally averaged mole fractions
approached 1,860 ppb in 2018, up from 1,775 ppb in 2006 (National Oceanic and Atmospheric
Administration, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/) and approximately 710 ppb in
preindustrial 1750 (Etheridge et al., 1998; Rubino et al., 2019) (Figure 1). Atmospheric CH4 mole fractions
have exhibited large fluctuations year to year, and these are observed in the high‐frequency measurement
record that began in 1983. Despite the fact that atmospheric observations showed these changes relatively
quickly, the mechanisms driving these variations in growth rate are not always well understood. In the past
few decades, there have been periods of significant differences in growth rate: a stabilization period in the
2000s during which mole fractions plateaued after a large rise in the 1980s and 1990s, and the period after
2007 during which mole fractions began rising again. The drivers of the stabilization period and of the
renewed growth period are still being debated more than one decade later (Turner et al., 2019).

The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC)
aims to limit climate warming from preindustrial levels to well below 2 °C by the Year 2100, with an aspira-
tion of 1.5 °C. Because of its high radiative efficiency and because its lifetime in the atmosphere is only
around a decade (Myhre et al., 2013; Prather et al., 2012), reductions in CH4 emissions will need to play a
significant role to quickly meet global climate targets (Mikaloff Fletcher & Schaefer, 2019). The
Representative Concentration Pathways (RCPs) (van Vuuren et al., 2011) are concentration trajectories
adopted by the Intergovernmental Panel on Climate Change (IPCC) for the Fifth Assessment Report to meet
various anthropogenic radiative forcing scenarios up to the Year 2100. RCP2.6 is one trajectory proposed to
achieve less than a 2 °C warming (Collins et al., 2013). A key component of RCP2.6 involves an approxi-
mately 30% decrease in atmospheric CH4 mole fractions from 2005 levels by the end of this century
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(Meinshausen et al., 2011), the implication being that annual emissions, including any climate‐CH4

feedback effects, must decrease by approximately 150 Tg/yr (Nisbet et al., 2019). This decrease is
equivalent to almost half of all anthropogenic CH4 emissions today including fossil fuels, agriculture,
landfills, and biomass burning.

Since the Paris Agreement, CH4 mole fractions in the atmosphere have, however, increased above the
RCP2.6 pathway (Figure 2a). In 2018, CH4 mole fractions were more than 100 ppb higher than in RCP2.6
and were also higher than RCP4.5 (Nisbet et al., 2019). While RCP2.6 is only intended to be indicative of sce-
narios that keep below 2 °C, it shows a divergence in radiative forcing that has been larger for CH4 than for
CO2 and nitrous oxide (Figure 2b, Nisbet et al., 2019). The extent to which this can be dealt with through
more substantial reductions in anthropogenic CH4 emissions or whether it will require deeper reductions
in CO2 cannot be resolved until the cause of this CH4 increase is better understood.

The continuing importance of reducing CH4 is seen in the newer Coupled Model Intercomparison Product 6
scenarios that are consistent with staying below 2 °C (Shared Socioeconomic Pathways, SSP1‐2.6 and SSP1‐
1.9), and these have CH4 mole fractions starting rapid decreases in 2020 or 2021 (Meinshausen et al., 2019)
(Figure 2). Because of the unexpected rise in CH4 mole fractions, SSP1‐1.9 and SSP1‐2.6 call for an even lar-
ger 45% reduction of 2020 levels by the end of the century because of the sharp decrease in CH4mole fraction
occurring later than proposed by RCP2.6.

Achievable methods for CH4 emission reductions have already been identified in a variety of sectors, some of
them more developed and others still in the research stage. Within agriculture, preliminary research has
shown how red algae and other dietary supplements can reduce methane emissions from cattle and sheep
by as much as 95% (e.g., Li et al., 2018; Roque et al., 2019). Considerably more work is needed, however,
to determine whether such supplements can be scaled industrywide and to confirm no change to nutrition
or taste. Changes to rice cultivation are farther along, including temporary drainage regimes and cultivar
selection. A recent study has shown that higher‐yielding cultivars of rice can increase yield ~10% while redu-
cing CH4 emissions by a similar amount, potentially through increased oxygen transport through roots to
the soil (Jiang et al., 2017). Within the fossil fuel sector, opportunities for mitigating emissions are already
being exploited. Satellites and hyperspectral aircraft platforms are providing increasingly valuable data sets
for identifying the locations of superemitters (Kort et al., 2014; Smith et al., 2017). These and other tools will
increasingly help companies identify disproportionally high emitting well pads in close to real time. Natural

Figure 1. Globally averaged atmospheric CH4 mole fraction (a) Prior to 1983, data are reconstructed from measurements
of ice cores, firn and archived air (Etheridge et al., 1998). The boxed region corresponds to the high‐frequency record.
(a) High‐frequency record (red) and long‐term (~12‐month) trend (black). (Source: Ed Dlugokencky, NOAA/ESRL, www.
esrl.noaa.gov/gmd/ccgg/trends_ch4/).
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gas distribution networks, especially in older cities, are targets of CH4

mitigation through gas pipeline replacement programs (Gallagher et al.,
2015). Such replacement programs can take decades to complete, how-
ever, due to cost considerations and the disruptions caused (Jackson
et al., 2014). Though more challenging, researchers and companies are
also beginning to consider industrial CH4 removal from the atmosphere,
as a complement to the extensive work on direct air capture of atmo-
spheric CO2. Oxidizing CH4 is an energy‐generating reaction that could
restore the atmosphere to preindustrial levels by removing ~3 × 109 t of
anthropogenically derived CH4 in the atmosphere today (Jackson
et al., 2019).

The success of the Paris Agreement relies on the collective emission
reductions pledged by individual nations through their nationally deter-
mined contributions. Baseline emission levels, and the reductions
planned relative to the baseline, are quantified by countries using
accounting‐based methods. An assessment of the progress in meeting
these pledges will occur through a global stocktake conducted every 5
yr. Despite the reporting requirements already in place by the UNFCCC,
one of the biggest issues is that studies that have attempted to compare
process‐based accounting methods (referred to as “bottom‐up”) against
emissions inferred from atmospheric measurements (referred to as “top‐
down”) have often found substantial discrepancies (e.g., Miller et al.,
2013; Saunois et al., 2016; Thompson et al., 2015). This is true both at
the national scale and at the global scale and highlights the large uncer-
tainties that exist in both types of methodologies. Without a better under-
standing of these discrepancies, it is difficult to knowwhether the national
strategies to reduce emissions aimed at meeting global climate targets
match the reality of what is occurring in the atmosphere.

Our current capability to understand the processes that drive changes in
atmospheric CH4 is largely based on the following (illustrated by
Figure 3): bottom‐up (process‐based) models of emissions and top‐down
(inverse modeling) estimates of CH4 emissions from atmospheric mea-
surements. Bottom‐up modeling refers to any simulation of an individual
process and can be achieved with varying levels of complexity. The sim-

plest bottom‐upmodels will take account of the extent of an activity andmultiply this activity by an emission
factor (EF) (e.g., the emission per unit activity). More complex bottom‐up models will simulate a process
using a variety of underlying factors. Wetland models, for example, account for variations in soil tempera-
ture, moisture, and other environmental factors. These estimates are valuable for understanding underlying
drivers, but uncertainties in process models, in activity data or EFs, or in not accounting for some processes,
can give an incomplete or uncertain account of emissions. Top‐down estimation refers to the process of
indirectly quantifying emissions from measurements of atmospheric CH4 mole fraction and other atmo-
spheric constraints. Top‐down methods can employ both global and regional (e.g., focused on a particular
country) approaches. Due to the underdetermined nature (insufficient data) of the “inverse” problem, emis-
sions using global methods are generally estimated at coarse (e.g., continental) resolution, with larger uncer-
tainties in regions that are poorly constrained by observations. The advantage of global methods is that the
full CH4 budget (i.e., all of the individual components from emissions and removal by sources and sinks,
respectively) is reconciled against the global network of atmospheric measurements. However, estimating
source and sink components separately is complicated by the large uncertainties that exist in estimates of
sinks. Regional methods can be applied over smaller areas where dense measurement networks exist and
used to infer emissions at (sub)national scales without the limitation of sink uncertainty. However, at pre-
sent, this has only been done for a few regions of the world. All three types of estimates—bottom‐up, top‐
down global, and top‐down regional—are subject to often poorly quantified random and systematic errors,
making uncertainty quantification for policy purposes a challenge. This study identifies the major

Figure 2. (a) Observed globally‐averaged CH4 mole fractions (open circles)
alongside those used as the basis for climate model runs in the Fifth
Assessment Report of the IPCC and which had CH4 mole fractions adjusted
from the original Representative Concentration Pathways to follow
observed values to 2011 (IPCC, 2013). The two lowest scenarios, SSP1‐1.9
and SSP1‐2.6, being used for the Sixth Assessment Report are also shown. (b)
Difference in radiative forcing (mW/m2) for the major greenhouse gases
between observations and the modified RCP2.6 scenario (open circles).
Lines show differences between RCP2.6 and scenarios RCP4.5, SSP1‐1.9,
and SSP1‐2.6 (Nisbet et al. (2019).
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improvements that are needed in our tools andmethodologies to be able to quantify global and national CH4

emissions and understand their underlying drivers on the timescales relevant for major climate policies.

2. Measurements
2.1. Global Mole Fraction Measurement Network

Observations of atmospheric CH4 mole fraction and their “isotopologues” (section 2.2) play a fundamental
role in monitoring the global carbon cycle. The current global “background” network (Figure 4) of CH4mole
fraction observations consists of multinational and national measurement programs (including, but not lim-
ited to, NOAA Global Greenhouse Gas Reference Network, Integrated Carbon Observation System, and
Advanced Global Atmospheric Gases Experiment, Dlugokencky et al., 2009; Prinn et al., 2018, http://
www.icos‐ri.eu). Background measurements indicate the CH4 mole fraction in air that has been well mixed
in the global atmosphere. To ensure that measurements are of sufficient quality to meet scientific needs, pro-
grams calibrate measurements against common standards and participate in collaborative intercomparison
round robins organized under the World Meteorological Organization's (WMO) Global Atmosphere Watch
(WMO, 2018).

The data from the surface network are used most fundamentally to estimate global average CH4 abundance
as a function of time. This time series provides key constraints on the global CH4 budget and year‐on‐year
changes. Using the NOAA uncertainty quantification method as an example, the total uncertainty in annual
mole fraction growth rate ranges from 0.4–1 ppb/yr (68% confidence interval), which translates to an uncer-
tainty of approximately 1.1–2.8 Tg/yr in global budgets (assuming 1 ppb = 2.767 Tg CH4, Fung et al., 1991).
The main challenge is in separating the global budget into estimates of emissions from sources and removal
by sinks because any uncertainties in the atmospheric CH4 lifetime (discussed in section 4.1) directly trans-
late into uncertainties in emissions.

Figure 3. Schematic of bottom‐up and top‐down studies using the United Kingdom as an example. The bottom‐up is
shown by the land‐based CH4 emissions map, computed at 1km x 1km resolution by the U.K. National Atmospheric
Emissions Inventory (http://naei.beis.gov.uk). Top‐down estimates utilize measurements from a variety of platforms
including tall towers, aircraft, ships, balloons, and satellites to infer emissions indirectly. The two are needed together to
understand the drivers of changes in atmospheric CH4 mole fraction. Emissions derived from bottom‐up and top‐down
methods are submitted annually by the United Kingdom to the UNFCCC in its National Inventory Report (Brown
et al., 2019). The United Kingdom's measurement program for quantifying national emissions is discussed in Palmer et al.
(2018) and Stanley et al. (2018).
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The global background network is also used to quantify seasonal cycles and latitudinal gradients in CH4

mole fraction. When combined with transport models and assumptions about sinks, data can be used to infer
CH4 emissions at, for example, continental scales. Higher‐resolution mapping of the spatial and temporal
distribution of atmospheric CH4 requires better data coverage in parts of the world where there are currently
significant gaps in the network. Ground‐based air sampling sites are very sparse over large parts of the tro-
pics and Siberia (e.g., Dlugokencky et al., 2011) and almost absent in interior Africa and South America
(Figure 4). Pandey et al. (2019) show that although the global average CH4 growth rate estimated by the
ground network is fairly accurate, biases in estimated hemispheric or latitudinal CH4 growth rates result
from sparse sampling. The main limitations in developing new sites are in the barriers imposed by lack of
political will and logistics support and in the need for long‐term commitment to monitoring.

Long‐term records are imperative to maintain in order to monitor changes in CH4 over time. All measure-
ments should either be calibrated to the scale maintained by the WMO/GAW Central Calibration
Laboratory or laboratories must maintain a direct link to this scale, traceable over the entire measurement
record. Measurements must be made to WMO standards and made publicly available for transparency.

The relatively long lifetime of approximately a decade means that CH4 measured at background sites has
been well mixed in the global atmosphere. Thus, these measurements are informative of emissions that have
occurred over large source regions and over time. Enhancements above this well‐mixed signal due to regio-
nal and local emissions are typically small in the surface background network. The challenge therefore
remains in attributing the changes in atmospheric mole fraction to the underlying processes at increased
spatial scales, such as national and subnational. Measurements that are representative of regional emissions
and that are not influenced by very localized sources are needed to estimate emissions and their drivers at
this resolution. To achieve this, some countries have implanted national measurement networks (e.g.,
United States and United Kingdom). The challenge is in ensuring high‐quality measurements from indivi-
dual groups that can be traced back to common WMO/GAW calibration scales and rigorously

Figure 4. Publicly available background CH4mole fractionmeasurements. Sites shown have beenmeasuring for at least 5
yr and are still in operation. Blue circles represent flasks filled with air at surface locations at approximately weekly fre-
quency and measured at central laboratories. Green triangles represent quasi‐continuous surface measurements using
instruments housed on‐site. Red squares designate vertical aircraft profiles made over fixed sites. Yellow crosses refer to
routine vertical profiles by AirCore. Pink plus symbols indicate column measurements made by the TCCON network.
Orange diamonds indicate concurrent flask measurements of the δ13C‐CH4 isotope ratio. Only few sites operate with
colocated sampling by different measurement programs or different instruments. Data archives shown here include
WMO/GAW World Data Centre for Greenhouse Gases (https://gaw.kishou.go.jp), AGAGE (https://agage.mit.edu/data/
agage‐data), NOAA GLOBALVIEWplus (https://www.esrl.noaa.gov/gmd/ccgg/obspack/), NIES Center for Global
Environmental Research (http://db.cger.nies.go.jp/portal/geds/atmosphericAndOceanicMonitoring), NOAA AirCore
(ftp://aftp.cmdl.noaa.gov/data/AirCore) and TCCON (https://tccondata.org).
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intercompared with collaborating laboratories. Even with increased data density, in order to attribute
changes in mole fraction to underlying processes, additional information is often required from isotopolo-
gues (section 2.2), process models (section 3), or coemitted tracers (section 4.5).

In addition to surface networks, aircraft campaigns and commercial aircraft programs provide vertical CH4

mole fractions measurements. These vertical profiles can be used to calibrate vertical mixing in atmospheric
transport models, which is critical for accurately inferring emissions from mole fraction data. Vertical pro-
files are also crucial for evaluating dry‐air column average CH4 (XCH4, discussed in section 2.3) relative
to the WMO mole fraction scale either by direct comparison or through the Total Column Carbon
Observing Network. Current vertical profile sampling is, however, limited in both sampling frequency
and spatial coverage. The NOAA North American aircraft program has a sampling frequency ranging from
once per week to once every 2 months over around 15 fixed sites (Sweeney et al., 2015). Over Brazil, approxi-
mately biweekly aircraft profiles of CH4 mole fraction are being made over four sites (Wilson et al., 2016).
The CONTRAIL program makes approximately weekly CH4 measurements on commercial flight routes
between Japan and destinations in Asia, Europe, and Australia (Machida et al., 2008). The CARIBIC con-
tainer is deployed at varying frequency on flights out of Germany to destinations in America, Asia, and
Africa (F. Boschetti et al., 2018; Brenninkmeijer et al., 2007). The challenge that remains is in providing
widespread and frequent vertical profiles economically and leveraging commercial carriers is one way to
expand this type of measurement.

Vertical profiles of CH4 have also been measured by short‐term aircraft campaigns such as HIPPO (HIAPER
Pole‐to‐Pole Observations) and ATom (Atmospheric Tomography Mission) and by the AirCore system.
AirCore, typically launched to themidstratosphere on a balloon, uses a long, narrow piece of tubing that pre-
serves a profile of air as it descends to the ground (Karion et al., 2010). Systematic sampling using the AirCore
system is currently in its early development stage and has only been implemented in a few locations
(Andersen et al., 2018; Engel et al., 2017; Membrive et al., 2017; Paul et al., 2016; ftp://aftp.cmdl.noaa.gov/
data/AirCore). An AirCore network employed over the surface network can enable monitoring of remote
locations and deliver measurements in the upper troposphere and lower stratosphere where aircraft mea-
surements are limited.

2.2. Isotopic Ratio Measurements

The main isotopic variations (the “isotopologues”) in CH4 molecules (e.g., 13CH4 vs. the dominant 12CH4)
have the potential to serve as important observables to understand the processes driving changes in the glo-
bal CH4 burden. This is because sources with different properties (e.g., those with biological origins versus
those from burning) emit CH4 with different ratios of the CH4 isotopologues. Sinks, such as the chemical
destruction of CH4 in the atmosphere, also change the isotopic ratio of the atmosphere due to the different
rates by which each isotopologue is chemically removed. Thus, measurements of the CH4 isotopologue
ratios provide one mechanism for attributing variations in CH4 mole fraction to the responsible process.

Monitoring the stable isotopic composition of CH4 has thus far been made almost exclusively through the
bulk isotopic ratios 13C/12C and D/H, using isotope ratio mass spectrometry (IRMS). Standard isotopic ratios
are reported using the δ notation (e.g., δ13C‐CH4 = 1,000 × [(13C/12C)sample/ (

13C/12C)standard− 1] with mea-
surements linked to a common international isotopic ratio scale, either Vienna Peedee belemnite for δ13C‐
CH4 or Vienna Standard Mean Ocean Water for δD‐CH4. Capabilities for these measurements exist at some
laboratories around the world (Umezawa et al., 2018); however, very few are maintaining long‐term
time series.

Using single laboratory studies alone to assess long‐term trends has the advantage of removing intercompar-
ison uncertainties. The disadvantages of this approach are the potential for calibration drift within the
laboratory (either due to standards or measurement methods) to go undetected and the difficulty in assim-
ilating measurements from multiple laboratories into larger and more useful data sets. The compatibility
goals, which refer to the maximum bias tolerated between measurement programs, for global monitoring
of δ13C‐CH4 and δD‐CH4 are 0.02‰ and 1‰, respectively (WMO, 2018). Interlaboratory comparison exer-
cises, which should be routinely performed, demonstrate that these goals are very ambitious (Umezawa
et al., 2018); however, long‐term data set comparisons using colocated sampling show that they can be
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approached, though not attained (Nisbet et al., 2019). It is vital to maintain colocated sampling at several
sites to ensure that these goals are being achieved, however very few sites currently operate in this way.

Owing to the larger abundance in the atmosphere of 13CH4 relative to CH3D, δ
13C‐CH4 has been more

widely measured in the atmosphere. Themeasurement challenge is defined by the very small observed inter-
annual differences and latitudinal gradients. Between 2000 and 2007, the rate of change in the global back-
ground for δ13C‐CH4 was undetectable, followed by −0.03%/yr between 2007 and 2014 (Nisbet et al., 2016),
and with an interhemispheric difference across the time series of <0.5‰ (Levin et al., 2012). With measure-
ment precisions using IRMS for individual samples that range between 0.02‰ to 0.1‰ these small differ-
ences have only been made statistically significant through long‐term single site measurements with
frequent and regular sampling. For δD‐CH4, detecting trends is even more challenged by current analytical
precisions and the technical capability to make measurements. Reported trends in δD‐CH4 have not been
statistically significant (Fujita et al., 2018), with +0.2 ± 1.4‰/yr reported between 2000 and 2006 (Rice
et al., 2016). Typical analytical precisions for δD‐CH4 by IRMS are >1‰.

Interpretation of the small isotopic atmospheric variations also requires careful consideration of measure-
ment uncertainty and any inaccuracies introduced through the propagation of standards. Despite notable
efforts by laboratories for best practice and to make intercomparisons, different realizations of the interna-
tional isotopic scales have resulted. A single step for improving the interlaboratory comparability of isotopic
measurements is for the introduction of gaseous reference materials. Sperlich et al. (2016) have made the
first effort in this regard, creating a suite of synthetic gaseous reference materials specifically for the purpose
of international scale dissemination. Expansion and improvements in these efforts will be invaluable over
the coming years as more laboratories gain the ability to make isotopic measurements.

The potential for measurements by laser spectrometry in the midinfrared to become a routine methodology
for ambient air sampling is significant (Eyer et al., 2016; Röckmann et al., 2016) . The major benefits of laser
spectrometric techniques include their potential for automation and continuous measurement, allowing
deployment outside a usual laboratory setting, and their ability to measure more than one isotope system
simultaneously. Measurements by laser spectroscopy have been proven in studies measuring enhanced
CH4 mole fractions near sources (Bergamaschi et al., 1998; Hoheisel et al., 2019; Santoni et al., 2012). In
the analysis of ambient air samples using an inline preconcentration method, precisions of 0.1‰ and
0.5‰ for δ13C‐CH4 and δD‐CH4, respectively, were demonstrated, which were subsequently also shown in
a field study alongside measurements by IRMS (Röckmann et al., 2016). These precisions are likely limited
by the reproducibility during preconcentration, and therefore, improvements in the trapping and separation
methods hold significant promise for improving the measurement precisions from ambient air samples.
However, measurements by laser spectroscopy currently require large sample volumes (>5 L) to attain use-
ful precision, whereas IRMS methods only require ambient sample volumes down to ~75 ml. Given these
large sensitivity differences, optical methods will require significant advancement over the coming years if
they are to compete with IRMS.

There are significant gaps in the characterization of source signatures, which are needed to interpret isotope
ratio measurements. (i) Measurements frommicrobial and biomass burning sources are significantly sparser
than for fossil sources, owing to the diffuse nature of the nonfossil samples and location of their emissions.
Many regions with significant wetland emissions are very poorly sampled, especially in the dominantly C4
tropical wetlands. For example, there are no measurements from the very large C4 wetlands in South Sudan
and Democratic Republic of Congo. Efforts need to be made to balance the measurements made of sources
relative to their emissions strength. Despite natural wetlands and agricultural sources having the largest
impact on the CH4 budget, δ13C‐CH4 microbial source signature measurement numbers are underrepre-
sented by more than 7:1 compared to fossil sources, as shown in the database compiled by Sherwood et al.
(2017). (ii) Fossil fuel δ13C‐CH4 signatures exhibit a large range, which can be related to, for example, the
type of coal being mined, the extraction method (Zazzeri et al., 2016), as well as oil and gas reservoir matur-
ity (Sherwood et al., 2017) Better understanding the drivers of these variations provides methods for
improved spatial and temporal extrapolation. In Sherwood et al. (2017), the majority of fossil samples are
from North American studies, leaving a major gap in characterization of signatures of emissions from
Asia (particularly China with its very large coal emissions), Middle East, Africa, and South America. (iii)
Source signatures could also exhibit temporal variation due to changing emission processes. Examples of
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temporal variation include changing oil and gas extraction depths within a producing basin over time
(Townsend‐Small et al., 2016), or wetland methanogenesis at a given location changing due to changing
environmental conditions (McCalley et al., 2014). For all sources, measurements assessing temporal source
signature variability are more limited than those assessing spatial variability. Studies show it may be impor-
tant to implement long‐term measurements quantifying temporal variation (Fisher et al., 2017;
Sriskantharajah et al., 2012). The availability of relatively inexpensive off‐the‐shelf spectrometers could help
to fill in the large gaps in source signature characterization in the coming years (Hoheisel et al., 2019).

The rate of removal of CH3D is significantly slower than 12CH4 leading to a significant kinetic isotope effect
and an atmospheric δD‐CH4 lying well outside the global average source signature and beyond even the hea-
viest fossil source measurements. δD‐CH4 could therefore be of particular use in quantifying changes in OH
concentration ([OH]), one of the most significant challenges in interpreting atmospheric CH4 (section 4.1).
Only few studies have used measurements of δD‐CH4 (Fujita et al., 2018; Rice et al., 2016; Tyler et al., 2007;
Umezawa et al., 2012; Warwick et al., 2016) owing to their sparsity (measurements of δD‐CH4 in the NOAA
network ceased some years ago, and currently, there are very few continuing long‐term time series), and
information on δD‐CH4 source signatures is comparatively even more limited than for δ13C‐CH4.
Collecting representative measurements on δD‐CH4 source signatures will become important if this valuable
and important constraint is to be used in model studies.

Isotopic measurements are more straightforward to interpret on regional scales rather than global scales as
pollution episodes have a direct and linear impact on the observed isotopic composition, which can be
related directly to the changes in mole fraction (Fisher et al., 2011; Fujita et al., 2018; Röckmann et al.,
2016;Warwick et al., 2016). However, inadequate spatial and temporal coverage of measurements hasmeant
that measurements have so far only been used to rule in or out a particular source type contribution rather to
than make flux estimates (Fujita et al., 2018; Umezawa et al., 2012; Warwick et al., 2016). Deploying field
instruments to measure near‐continuous and high‐precision δ13C‐CH4 and δD‐CH4 alongside mole fraction
measurements will drive development in regional flux estimation over the coming years (Rigby et al., 2012;
Röckmann et al., 2016).

Radiomethane (referred to in the notation Δ14CH4) has potentially the strongest constraint for quantifying
the fossil source of CH4 (Lassey et al., 2007; Levin et al., 1992). The global 14CH4 budget is balanced by three
flux factors: (i) emissions of 14CH4 from nuclear power plants andmilitary use of nuclear propulsion, (ii) bio-
genic emissions whose carbon has ultimately been derived from atmospheric CO2 (which contains 14CO2),
and (iii) fossil CH4 which is devoid of 14CH4. As with the stable isotope ratios, a more immediate benefit of
Δ14CH4 could come at the regional scale; however, in regions where nuclear sources exist, careful considera-
tion needs to be paid to properly assess and quantify this interfering component (Graven et al., 2019;
Townsend‐Small et al., 2012). Coupling regional transport models to measurements of Δ14CH4 would allow
quantification of the fossil component of CH4; however, the samplingmethods tomake this possible are only
starting to be developed (Espic et al., 2019). In addition, background stations must implement routine and
long‐term measurements to accurately quantify the regional Δ14CH4 background.

The stable isotope ratios reported in the atmosphere so far have only attempted to quantify total atomic iso-
tope ratios, ignoring the very small differences in the multiply substituted isotopologues or “clumped” iso-
topes (13CH3D,

12CH2D2,
13CH2D2,

12CHD3,
13CHD3,

12CD4, and
13CD4). Experimental and theoretical

studies have suggested enrichments in 13CH3D and 12CH2D2 due to kinetic and thermodynamic processes,
and the small number of natural sample measurements to date has detected a range in clumped isotope
ratios (Douglas et al., 2017; Haghnegahdar et al., 2017; Stolper et al., 2014; Stolper & Eiler, 2015; Wang
et al., 2015; Whitehill et al., 2017; Young et al., 2016, 2017).

Significant developments are being made in clumped isotope measurements by both IRMS (Eiler et al., 2013;
Stolper et al., 2014; Young et al., 2016) and laser spectroscopy (Ono et al., 2014); however, these methods are
far from being able to measure at ambient CH4 levels. Comparing theoretical and model calculations of
clumped isotope ratios against atmospheric measurements would require CH4 to be removed from several
hundred liters of air and this feat is yet to be achieved. Similar sample volume requirements have been
required for removing CH4 from ice core samples for Δ14CH4 analysis (Petrenko et al., 2008); however,
the additional challenge for clumped isotopes is that the distribution among isotopologues must be
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preserved during sampling. The evidence so far suggests that measuring clumped isotopes in the atmosphere
is a worthwhile endeavor; however, long‐term time series need to be measured and a database of source
signatures compiled.

2.3. Remote Sensing of Atmospheric XCH4

Column concentrations of trace gases can be measured by observing the absorption of radiation in the atmo-
sphere from space. Atmospheric CH4 absorbs radiation in the shortwave infrared (SWIR) at 1.65 and 2.3 μm
and in the thermal infrared (TIR) at around 8 μm. SWIR is measured by instruments observing the backscat-
ter of solar radiation from the Earth's surface and atmosphere, while TIR is based on measurements of
thermal emissions (Jacob et al., 2016). Spaceborne observations have the advantage over ground‐ and
aircraft‐based measurements in that they provide global coverage of column concentrations at regular inter-
vals, making observations cost effective, particularly for remote regions of the world.

Satellite observations have provided us with new insights into the CH4 cycle. Using satellite CH4 data, it has
been possible to determine the location and strength of CH4 emissions (Bloom et al., 2010), to diagnose the
response of tropical wetland emissions to precipitation changes induced by the El Niño–Southern
Oscillation (Pandey et al., 2017; Parker et al., 2018), to reevaluate the role of emissions from fires (Worden
et al., 2017), and to infer trends in regional total and anthropogenic CH4 emissions (e.g., Ganesan et al.,
2017; Miller et al., 2019; Turner et al., 2015), Recent studies have also used satellites data to assess large
CH4 emission hot spots (section 2.4).

Satellites measuring absorption in the SWIR include SCIAMACHY, GOSAT, GOSAT‐2, and Sentinel 5P
TROPOMI and in the TIR include IMG, IASI, AIRS, TES, and CrIS. While both SWIR and TIR measure
XCH4, TIR is more sensitive to absorption in the upper troposphere andmay be less appropriate for inferring
surface processes (Siddans et al., 2017; Xiong et al., 2016). However, using SWIR and TIR data together in
model studies may help to improve emission estimation bymore accurately representing the vertical column
(Jacob et al., 2016).

Both the SWIR and TIR satellites mentioned so far are passive sensors and rely on external sources of energy.
Passive instruments that depend on sunlight as the source of energy are unable to measure in late fall, win-
ter, and early spring in the high latitudes, where “shoulder‐season” fluxes of CH4 are thought to be signifi-
cant part of the annual wetland CH4 budget (Treat et al., 2018; Zona et al., 2016). Active sensors, such as
MERLIN, using Lidar as the source of energy at the wavelengths that CH4 absorbs (Ehret et al., 2017) are
being planned or are in development. Active remote sensing has the potential for significantly improving
measurement coverage in high‐latitude regions, providing data with fine resolution along a narrow ground
track that has higher likelihood of measuring backscatter from all clear‐sky conditions.

The main limitation in interpreting satellite XCH4 data is the need to quantify any biases in the data, which
can vary in time and space. This is essential to ensure that data sets are consistent over time as well as
between different instruments. Biases arise because it is necessary to convert raw radiances measured by
the satellite into XCH4. Two sets of retrieval algorithms are commonly used for SWIR satellites. These
include a “CO2 proxy” method and a “full‐physics” method (Frankenberg, 2005; Parker et al., 2011;
Streets et al., 2013). The full‐physics approach attempts to model radiative transfer through the atmosphere
using information on atmospheric aerosols extracted from a near‐infrared O2 band. To avoid biases from
uncertainties in the treatment of aerosols and thin clouds, these retrievals are limited to regions with mod-
erate aerosol loadings (typically with aerosol optical depth of less than 0.3). The “CO2 proxy”method makes
use of CH4 and CO2 absorption bands, which are in spectral proximity to each other so that aerosol effects
cancel out in the retrieved CH4:CO2 ratio. XCH4 can then be obtained by combining the ratio with modeled
CO2. This method results in enhanced coverage compared to full‐physics methods, specifically in the tropics
and the highly polluted areas of Asia. In contrast to the full‐physics method where aerosols are the main rea-
son for retrieval biases, it is primarily uncertainties in modeled CO2 that can introduce biases in the retrieved
proxy XCH4 (Parker et al., 2015). The Total Column Carbon Observing Network of ground‐based spectro-
meters (Wunch et al., 2011) is used to diagnose any biases in GOSAT that result from the complexity of
retrieval algorithms (e.g., Buchwitz et al., 2017); however, they may be unquantified in regions not covered
by the network, which operates around 30 stations worldwide. Therefore, expanded surface in situ and col-
umn measurements, potentially through the development of lower‐cost instruments (e.g., Frey et al., 2019),

10.1029/2018GB006065Global Biogeochemical Cycles

GANESAN ET AL. 1484



and improved vertical profiling are needed to improve quantification and correction of these biases and
therefore extend the utility of XCH4 measurements for understanding surface processes. Despite any
direct bias correction, all modeling studies using these data sets should attempt indirect assessment of
these biases by (i) using independent calibrated data, where possible, and (ii) when using data derived
from the CO2 proxy method, investigate the systematic uncertainty in derived emissions that is imposed
by the modeled CO2 fields.

Observing System Simulation Experiments have been carried out to identify optimal sampling strategies
(Sheng et al., 2018) and have identified the need for higher spatial resolution and improved spatial coverage
in order for spaceborne observations to be relevant to the monitoring of international climate policies. The
capability in spaceborne observation of XCH4 is rapidly improving in spatial and temporal coverage. The
TROPOMI instrument aboard Sentinel‐5P (launched October 2017) represents a major step forward owing
to its daily global coverage and high spatial resolution (Figure 5, Hu et al., 2018). Observations from
TROPOMI will allow much better regional characterization of CH4 emissions (Figure 5b), and their spatial
resolution of ~50 km2 (at nadir) means that large urban areas will be able to be resolved (Figure 5c). Further,
due to frequent overpasses, temporal variations in emissions can be monitored, which is important for urban
areas, facilities, and large‐scale accidents. A further advancement in spatial resolution of space‐based obser-
vations will come with the Copernicus CO2 Monitoring Mission (CO2M), which is being developed to pro-
vide the appropriate means and capacity of assessing the effectiveness of the Paris Agreement. CO2M will
consist of a constellation of identical satellite missions measuring XCO2 and XCH4 with 4‐km2 spatial reso-
lution and global coverage every 3 days. With GOSAT‐2/‐3, Sentinel‐5P and −5 and CO2M, the coming dec-
ade will provide unprecedented global monitoring capabilities of XCH4 from space. However, these missions
are all launched into Sun‐synchronous low Earth orbit orbits and are aimed at providing global coverage;
thus, their spatial resolution is relatively coarse and they provide no information on diurnal variations.

New satellite architectures will be needed to overcome observational limitations of these satellites and to
provide synergistic observations to the global survey missions. Geostationary such as Geo‐Carb and smaller
satellites have the potential to provide diurnal or diel coverage of XCH4 and pointing capabilities for point‐
source detection. Point‐source detection maximizes the number of ground samples within a specific area
whenever the satellite orbit is close to a targeted source. With GHGSat‐D, the first dedicated mission for

Figure 5. XCH4 mole fractions from (a–c) TROPOMI and (d–f) GOSAT (derived using the CO2 proxy method): (a, d) Global, (b, e) Los Angeles basin, and
(c, f) Lahore, Pakistan. Values represent the annual mean of TROPOMI observations between May 2018 and May 2019 and GOSAT observations between January
2016 and January 2017. GOSAT data also include glint observations over the oceans. Background surface mole fractions differ by ~30 ppb at the midpoint of the two
periods, and the color bar is shifted by the same amount so that patterns can be compared. (a–c, e, and f) TROPOMI data and regional/urban GOSAT data are
plotted in 0.1° × 0.1° bins, while (d) GOSAT data are plotted globally in 0.5° × 0.5° bins to improve visibility.
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point source detection is already in orbit which uses novel imaging technology to detect CH4 plumes on a
spatial scale of tens of meters (Varon et al., 2019). Also, the recently launched GOSAT‐2 has a flexible point-
ing system, which will be used to target local emissions sources but the large ground footprint of GOSAT‐2
with a diameter of about 10 kmwill limit this capability to very strong sources. Further small satellites aimed
at local emissions are planned (e.g., Environmental Defense Fund's MethaneSAT) providing new capabil-
ities for regular monitoring of localized CH4 sources. Combining such high‐resolution satellites with those
that employ global and frequent coverage, such as TROPOMI, would allow for anomalies to be efficiently
detected and which can be mapped in greater detail once pinpointed.

Isotopic monitoring by remote sensing methods is in its infancy and in the foreseeable future is unlikely to
generate the measurement precisions required to observe isotopic differences or trends in the atmosphere.
Malina et al. (2019) argue that GOSAT‐2 would be able to detect δ13C‐CH4 changes of up to 10‰; however,
these levels of detection are still inadequate for improving our understanding of flux estimates at any scale.
Improvements in this technology could revolutionize the geographic coverage of isotopic measurements but
are decades away.

2.4. Measurements of Oil and Gas Hot Spots

CH4 hot spots mostly refer to spatial concentration anomalies over a background level at local or regional
scale. One example is the SCIAMACHY remote sensing signal over the Four Corners region in New
Mexico and Colorado, USA, where XCH4 enhancements above regional background of 20 ppb on average
were found over 2003–2009 (Kort et al., 2014). These enhancements were associated with intensive fossil fuel
production in the region and confirmed with local aircraft measurements a few years later (Smith et al.,
2017). It is important to note that several other high CH4 emitting regions such as West Virginia and
Pennsylvania (intensive coal mining) did not show up as hot spots in SCIAMACHY. It is likely that other
factors such as regional topography at least contribute to the observation that the largest concentration
hot spots are not necessarily associated with the largest emission hot spots.

A regional hot spot at the scale of 104–105 km2 requires measurements over much larger areas (>105 km2) to
identify the anomaly from the regional background. Recently, launched satellite instruments such as
TROPOMI as well as future missions (e.g., MethaneSAT) will produce more data at higher spatiotemporal
resolution than current and past satellites. The new data may identify new hot spots but will also need to
verify the locations, spatial extent, and magnitude of previously identified hot spots based on the much lar-
ger data sample size and signal‐to‐noise ratio. As discussed above, high concentrations do not necessarily
imply high emission rates or even high gas production normalized emission rates (“leak rates”). In order
to globally identify regions with a potential for relatively large CH4 emission reductions, satellite measure-
ments need to be accompanied with methods for emission rate quantification (e.g., inverse modeling driven
by accurate and high‐resolution meteorological inputs), databases of oil and gas production, and inventories
of CH4 sources other than fossil fuel. Given the massive data quantities at global scale, this process needs to
be automated, at least at first pass, to ensure near real‐time data analysis.

Aircraft are less suitable for identifying regional‐scale hot spots because of the difficulty of collecting mea-
surements over areas over 105 km2 under comparable atmospheric conditions. Nevertheless, raster pattern
flights have been successful in identifying local hot spots (e.g., within a natural gas producing region in
Arkansas) at scales of 102–103 km2 (Schwietzke et al., 2017). Raster flights provide precise, real‐time infor-
mation on spatial patterns, while mass balance flights allow for source quantification of plumes at the facility
and regional scales, after simple atmospheric modeling to convert measurement data into emission esti-
mates (Schwietzke et al., 2017). Future measurement campaigns may combine in situ measurements during
raster patterns with imaging spectrometry (e.g., Thorpe et al., 2017) on the same aircraft. This approach
could combine the advantages of both measurement techniques to yield instantaneous mapping of high con-
centrations along with the identification and quantification of point sources.

Large emission point sources occurring over relatively brief periods may also be considered hot spots. Such
temporal hot spots include large‐scale accidents in the oil and gas industry (e.g., Aliso Canyon natural gas
storage facility in California), which can emit CH4 for weeks to months at a rate larger than the total CH4

emissions from the average U.S. oil and gas basin (Peischl et al., 2018). The first reported emission estimates
at Aliso Canyon came from rapidly deployed light aircraft instrumented with a continuous CH4 analyzer
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that mapped the vertical 2‐D concentrations immediately downwind of the gas storage facility leak.
Additional downwind measurements from vehicle‐based sensors (California Air Resources Board, 2016)
and inverse modeling studies later confirmed the initial aircraft estimates. Some of these measurements
were repeated for months to track the progress of the facility operator fixing the leak. Such tracking of tem-
poral hot spots over time may be achieved through future satellite missions that offer the appropriate tem-
poral and spatial resolution (section 2.3). Large‐scale accidents and other equally large methane releases are
also known to happen outside the United States. Examples include the bursting of a gas pipeline in Algeria
(Louhibi‐Bouiri & Hachemi, 2018) and venting at a compressor station in Turkmenistan (Varon et al., 2019).
While the resulting emissions from the Algeria incident were based on engineering calculations (Louhibi‐
Bouiri & Hachemi, 2018), the Turkmenistan incident was observed from space via GHGSat‐D and
TROPOMI over more than 1 yr later. Such large emission events are not included inmost current inventories
(section 3.2).

3. Bottom‐Up Modeling

We discuss below the current limitations faced in global bottom‐up modeling of the major CH4 source cate-
gories. National inventories also utilize methods to account for anthropogenic emissions and these can differ
from global inventories. For submission to the UNFCCC, each country must follow the detailed guidance
given in the IPCC guidelines (IPCC, 2006, 2019). The guidelines use a tiered approach in the compilation
of national emissions. The simplest, Tier 1, relies on default EFs, whereas Tiers 2 and 3 allow country‐
specific methods, data, andmodels to be incorporated. These tiers require significant socioeconomic and sta-
tistical data to be available and be annually updated in a timely manner and this is a major challenge in less
economically developed countries. Future improvement to national inventories would come in the form of
higher tiers, which would have emissions spatially and temporally (subannually) resolved. These higher
tiers would allow for detailed comparisons to be made with other independent estimates (section 4).

3.1. Wetlands and Other Natural Water Bodies

Natural water bodies emitting CH4 are mainly comprised by wetlands, however, recent studies have
highlighted local to global‐scale importance of emissions from lakes (Wik, Varner, et al., 2016) including
thermokarst (Walter Anthony et al., 2018), reservoirs (Deemer et al., 2016) and coastal and open ocean
areas (Weber et al., 2019).
The modeling approaches used to simulate wetland CH4 emissions are diverse and can be distinguished by

how they define wetland types, quantify wetland area, and produce and transport CH4 to the atmosphere
(Xu et al., 2016). The majority of wetland models simulate CH4 according to a general definition of vegetated
wetlands and exclude emissions from rice and inland waters, which can include rivers, lakes and small
ponds (Matthews & Fung, 1987). Vegetated wetlands can grow in diverse habitats (Cowardin et al., 1979),
for example, along river banks (i.e., riparian zones), on mineral or organic soils, experience seasonal or per-
manent inundation, or have soils that have complex cycles of freezing and thawing (i.e., permafrost). In
many cases, models simply assume that if soils are flooded, then anaerobic conditions are present to initiate
CH4 production.

Several global data sets of wetland area and dynamics exist (e.g., Global Inundation Extent ofMulti‐Satellites
Observations, Surface Water Microwave Product Series, and the Land Parameter Data Record), each
depending on passive microwave measurements to determine surface inundation (Du et al., 2017; Pham‐

Duc et al., 2017; Prigent et al., 2007). New satellite missions (e.g., Sentinel 1, SWOT) aim to provide high‐
resolution (<30 m), passive microwave observations that can be used to map wetlands in more detail than
current technologies allow. Passive microwave observations integrate backscatter signals for vegetated wet-
lands and inland waters but are sensitive to the presence of surface water and thus do not capture wetlands
lacking water at or above the soil surface. Optical products of vegetated wetlands using visible to near‐
infrared wavelengths have the advantage of inferring wetlands by mapping species composition, but these
products can be uncertain or unable to provide seasonal or longer‐term dynamics of hydrology (Guo
et al., 2017). The high spatial resolution provided by some Cubesat technologies (1–5 m2) could allow for
mapping wetlands at very high resolution (Cooley et al., 2017). Remote sensing approaches that combine
passive microwave and optical instruments should be used to leverage the capabilities of both types of obser-
vations. This advance can help in reconciling scaling and definition challenges, as one of the largest sources
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of uncertainty in wetland CH4 emission estimates is in the partitioning of fluxes between vegetated wetlands
and inland waters.

More strategic observations are required to constrain the distribution of wetlands and emissions from high‐
latitude, lakes and ocean regions. In the permafrost regions of the high latitudes, atmospheric measurements
from Alaska have been used to assess long‐term trends in North Slope emissions and to determine the tem-
perature sensitivity of these emissions (Sweeney et al., 2016). Long‐term atmospheric measurements from
other high‐latitude regions that are not significantly impacted by anthropogenic sources and that are made
alongside biogeochemical measurements are necessary to diagnose and detect any permafrost feedbacks.
Including isotopic measurements at these sites, including of radiocarbon, would also be useful for robustly
associating themole fraction enhancements to emissions from permafrost rather than from other sources (K.
M. Walter et al., 2006; Zimov et al., 2006). At present, atmospheric measurement stations in the high lati-
tudes are sparse (section 2.1).
The episodic nature of emissions from lakes and coastal areas means that measurements sampling their spa-
tial and temporal variability are required (Wik, Thornton, et al., 2016). These require long‐term floating
chamber measurements or oceanographic cruise measurements that can capture the variability in diffusive
flux and ebullition. Utilizing atmospheric measurements could also be used constrain net fluxes from these
areas provided that the impact of other sources is small. High spatial resolution remote sensingmissions (i.e.,
from Planet or SWOT) will provide 3‐ to 15‐m observations and could complement these in situ approaches.
In the open ocean areas, more regular cruises sampling seawater CH4 concentration are required. Most esti-
mates of open ocean emissions have been derived frommeasurement composites made frommeasurements
spanning over three decades (Bange et al., 2009), highlighting the sparsity of these measurements and the
difficulty in assessing temporal changes.

The challenges in observing these heterogeneous systems can be overcome partly by expanding and combin-
ing in situ measurements with aircraft campaigns and leveraging existing and planned spaceborne missions.
These observations cover a range of scales, from small footprints (10 m2) to landscapes (103 m2) to regions
(104 m2), which can be integrated within modeling activities. Combining measurement approaches across
scales can address the heterogeneous nature of CH4 fluxes measured by chambers, provide detailed and
expansive views on CH4 enhancements using aircraft, and can provide sustained measurements over time
in the case of satellites. Process‐based models can be used across these scales for parameter estimation, data
assimilation, and model benchmarking activities. Data‐driven “upscaling” approaches have also been devel-
oped where flux tower observations of CH4 are interpolated using gridded fields of meteorology, soil type,
and hydrologic conditions (Davidson et al., 2017; Peltola et al., 2019). However, key gaps in observation net-
works remain, and these networks must also consider wetland CH4 emissions hot spots that might emerge in
the future, such as in permafrost regions. A recent effort to develop a global database of flux tower measure-
ments of CH4 shows that only a handful of measurements of tropical wetland CH4 emissions exist (Knox
et al., 2019), despite this biome contributing >70% of global wetland CH4 emissions (Saunois et al., 2016).
Closing these coverage gaps and developing novel ways to extend the time series are needed to understand
seasonal and interannual variability. Additionally, flux data sets from towers or chambers are critical for
developing “response functions,”whereby the response of wetland CH4 emissions to changes in temperature
or soil moisture can be accurately quantified (e.g., Turetsky et al., 2014). At present, it is not resolved
whether the uncertainties in wetland emissions are mainly due to uncertainties in wetland area or from
the parameterization of methanogenic responses and how these affect regional to global net CH4

emission estimates.

Wetland models differ in how CH4 is produced and consumed in the soil and eventually transported to the
atmosphere either by diffusion, ebullition, or plant‐mediated transport (M. B. Walter & Heimann, 2000).
Methane emissions are typically modeled as the net production (sum of methanogenesis minus methanotro-
phy) by relating the better known processes like net primary production or aerobic soil decomposition that
produces CO2, to ratios of CO2:CH4 that have been measured in the field, typically by chambers or flux
towers (Christensen et al., 1996). This calibration of carbon substrate to CH4 production is sensitive to the
footprint that CO2 and CH4 measurement techniques integrate over and the implementation in process‐
based models can lead to significant intermodel variability (Poulter et al., 2017). For example, soil chambers,
flux towers, airborne eddy covariance, and atmospheric inversions have all been used to calibrate these rela-
tionships (Pickett‐Heaps et al., 2011), but the observing techniques cover different spatial scales that can bias
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or lead to mixed source signals in the flux. Redox states ultimately determine when and where
methanogenesis (i.e., the gross flux) will take place (Grant et al., 2015; Reinhold et al., 2019), and future
models should incorporate the details needed to reconcile these production and consumption processes
individually. Future work must also consider the representation of permafrost in land surface models,
which currently varies significantly in complexity (McGuire et al., 2018). This leads to a large uncertainty
in the prediction of the magnitude of the CH4‐climate change feedback expected for the 21st century
(Koven et al., 2011; Walter Anthony et al., 2018; Z. Zhang et al., 2017).

Several important processes may be missing from wetland models: (i) The production and transport of CH4

by trees has recently been observed in forested systems in temperate and tropical biomes (Barba et al., 2019;
Covey & Megonigal, 2019; Welch et al., 2019). In the tropics, for example, transport of CH4 via tree stems
accounts for a large part of the overall CH4 budget (Pangala et al., 2017). As of yet, no wetland models
include these newly identified production and transport pathways; (ii) Only some models simulate produc-
tion and consumption in the soil column separately, while others only simulate the net flux (iii) New trans-
port pathways are being identified, including the potential for dissolved CH4 to be transported from sites of
production in vegetated wetlands and emitted in adjacent inland waters (Borges et al., 2019). Including these
pathways in models could the reduce double counting of emissions (Aufdenkampe et al., 2011).

3.2. Fossil Fuels

Methane emissions from fossil fuels stem largely from the extraction and processing stages when CH4 is
vented, leaked, or incompletely combusted (e.g., gas flaring where gas is generated as a side product from
oil production). The main fossil fuel CH4 inventories include data sets such as the Emissions Database for
Global Atmospheric Research (EDGAR) (Janssens‐Maenhout et al., 2019) and the U.S. Environmental
Protection Agency (EPA). Greenhouse Gas Inventory (U.S. EPA, 2012), as well as individual studies
(Höglund‐Isaksson, 2017; Schwietzke et al., 2014a). The EDGAR inventory relies to a large extent on
IPCC EFs (IPCC, 2006, 2019) paired with country‐reported activity data. Tier 1 EFs represent the lowest level
of detail and are used for countries where more detailed information is not available. Tier 2 and 3 EFs
include information such as the specific geology (e.g., CH4 intensity from coal mines) or technology used
(e.g., gas distribution pipeline material). More country‐level EFs are needed, which requires taking into
account local operating practices and technologies. For example, coalbed CH4 production, a common prac-
tice in Australia, includes the use of different gas production equipment than conventional or shale gas pro-
duction elsewhere because of, for example, the relatively large production of water associated with the gas.

Höglund‐Isaksson (2017) and Schwietzke et al. (2014a) focus specifically on the fossil fuel sector and include
ethane (C2H6) emissions (discussed in section 4.5). These inventories share with EDGAR the gaps of par-
tially relying on available EFs that are not necessarily representative of specific countries. Nevertheless,
Höglund‐Isaksson (2017) explicitly accounts for country‐specific data on associated gas production along
with empirical data on associated gas flaring. As a result, Höglund‐Isaksson (2017) finds substantially smal-
ler CH4 trends from oil and gas production than EDGAR and U.S. EPA, while absolute emissions are sub-
stantially larger. The gridded emission inventory by Schwietzke et al. (2014a) was designed to test
different global natural gas “leak rate” scenarios against atmospheric observations, and finds that
country‐level emissions vary significantly from EDGAR.

Three improvements in current inventories should be considered to enhance current knowledge of fossil fuel
CH4 emissions at the country and global levels. First, existing and future atmospheric measurements of CH4

at the facility level (e.g., well pads and gathering stations) and regional level (e.g., oil and gas producing
basin) could be used to verify and scale reported and calculated emissions in national inventories. One of
the challenges with this approach is that current inventories are mostly assembled at the component level
(e.g., a type of pneumatic device). Thus, component‐level estimates (based on a combination of engineering
calculations and component‐level measurements) in the inventories may need to be aggregated to represen-
tative facilities for comparison with facility‐level measurements. This is important because a recent synthesis
of dozens of studies in the United States showed that inventories at the component‐level substantially under-
estimate (by about 60%) total emissions (Alvarez et al., 2018). The reason for this underestimate is likely
because component‐level estimates fail to account for the so‐called fat‐tail in the empirical distributions in
emissions that have been observed through facility‐level (i.e., fence line) measurements. It has been
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shown across the oil and gas supply chain that relatively few emitters (5% of the samples) account for about
50% of total emissions (Brandt et al., 2016). Accounting for fat‐tail distributions in aggregated facility‐level
emission estimates requires development of the statistical representation of most current inventories to
include central value estimates in addition to mean values.

Second, emissions from large‐scale accidents (section 2.4) should be identified and included in emission
inventories to avoid underestimating total emissions to the atmosphere. California's emissions inventory
(California Air Resources Board, 2018) includes the Aliso Canyon accident as a “one‐time event” in its
inventory as a new “Other Emissions” category with the rationale that “its emissions will be fully mitigated
in future years” (California Air Resources Board, 2017). The reported emission rates over time are based on a
combination of aircraft measurements, remote sensing, and engineering calculations (California Air
Resources Board, 2017). While such categorization provides a mechanism for including emissions from
large‐scale accidents, it must be noted that only accidents known by the respective governments (e.g.,
through mandatory reporting of such events) can be tracked this way.

Third, emissions trends derived in inventories are partly based on information about emission reduction pro-
jects, such as enhanced CH4 capture or flaring in deep coal mines (Environmental Protection Agency, 2012).
However, such information may not necessarily include data assessing whether the emission reduction pro-
jects and applied technologies actually lead to emission reductions, as shown in a recent study over China
(Miller et al., 2019). Future remote sensing capabilities (section 2.3) along with campaign‐style local mea-
surements could be used to track emissions over time at wider scale, thereby providing independent esti-
mates of global inventory trends.

3.3. Waste

In EDGAR v4.3.2 (Janssens‐Maenhout et al., 2019), CH4 emissions from waste are distinguished between
landfills and waste water treatment. Both are derived from the fermentation of organically degradable mate-
rial in the solid or liquid waste flow. EDGAR emissions are generally higher than those reported by countries
to the UNFCCC, and its uncertainties are also relatively high.

Themain uncertainties in landfill emissions stem from the composition of waste disposed to landfills and the
rate of degradation of waste. A major problem in quantifying landfill emissions is in the proxy data used to
calculate the amount of solid waste per capita. Detailed information on solid waste is not available for non‐
Annex I countries, and thus, EDGAR uses urban population with gross domestic product per capita as proxy.
However, there is considerable scatter in the relationship between gross domestic product and solid waste
per capita, causing the large uncertainty in landfill emissions.

The main uncertainty in wastewater emissions is caused by the lack of regional information in type of waste-
water treatment system. A distinction is made between a sewer with or without city wastewater treatment,
latrines (open pits and septic tanks), and raw discharge. In the absence of regional information, it is instead
generally assumed that there is no wastewater treatment in relatively poor countries and that developed
countries employ a certain distribution of different treatment types. This assumption is based on an assess-
ment of which countries exhibit similar habits and infrastructures.

The CH4 emissions from landfills and wastewater could be better characterized through expanded measure-
ment campaigns. In developed countries, CH4 measurements around waste plants (e.g., Sonderfeld et al.,
2017, for a landfill in the United Kingdom or Yver Kwok et al., 2015, for a wastewater treatment plant in
France) should be encouraged. More measurements are required to get representative data for a large frac-
tion of landfills and wastewater treatment plants, which are expected to vary considerably amongst regions.
It is also recommended to evaluate ratios of emitted CH4 to other substances emitted by degrading waste,
because data of substances such as air pollutants can have a longer history and better coverage.

Finally, the spatial distribution of any activity regarding waste or wastewater is allocated to the place of the
facility, if this information is known. This information is only explicitly available over Europe through the
European Pollutant Release Transfer Register. Beyond Europe, spatial distribution proxies with total popu-
lation and urban population maps are used based on the assumption that waste treatment is present for the
entire population in developed countries and only for the urban population in developing countries. More
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data from representative regions are needed to validate these assumptions, particularly in tropical megaci-
ties, where landfill emissions are becoming more important than other sources of CH4.

3.4. Agriculture

Emissions from agricultural soils use as activity data the total area harvested for rice cultivation (United
Nations Food and Agriculture Organization, FAO, or ministerial statistics on arable land). Different ecology
types (rainfed, irrigated, deep water, and upland) are considered and input from regional reports (e.g.,
International Rice Research Initiative statistics). The importance of accurate regional information is demon-
strated as an example for China, where official statistics underestimate the total harvested area by 40%
(Denier van der Gon, 1999, 2000). EFs from IPCC (2006) and from regional studies (Mitra et al., 2004;
Gupta et al., 2002; Neue, 1997) also differ by ~30%. Therefore, more country‐specific data, in particular on
the type of rice cultivation, patterns of multiple harvesting and fertilizer usage are essential. Fertilizers usage
is currently derived from trading statistics proxies, which are not verified for individual countries.

While maps of crop distributions have improved (through, e.g., the FAO spatial data sets, http://www.fao.
org/geonetwork), large uncertainties are present in the temporal profiles, which need to accurately capture
growing seasons. Global crop monitoring from space combining Sentinel 1 and 2 satellite data with revisit
times of 10 days and spatial resolutions of 30m has been a recent advance for assessing emissions from crops.
Despite these advances, crop masks derived from satellites still require refinements in many countries, with
in‐country data to verify the spatial distribution of different crops.

Emissions from animals result from enteric fermentation and manure management. For enteric fermenta-
tion, EFs are formed by country‐specific milk yield (dairy cattle), carcass weight (other cattle), or default
regional values (other animals). In addition to needing better country‐specific information on these para-
meters, the largest uncertainties are due to the parameters that are not typically considered in models, such
as antibiotic use and feed of the animals. Emissions from manure management are also highly uncertain in
the parameters related to animal weight and feed, as well as treatment (i.e., end‐use of the manure), which
can differ strongly by country and vary significantly over time. Due to insufficient data, it is assumed that
there is no change in time in these parameters, and this likely leads to the EDGAR emission time series
not reflecting the real emissions trend. For all animal emissions processes, better country‐ and
technology‐specific data are required, contrasting both developed and developing countries, where there
can be a significant difference in the weight of the animal and methods of farming (such as animal feeding).

CH4 emissions from aquaculture is now estimated to be a large global source with emissions having steadily
increased over the last decade (FAO, 2018; Yuan et al., 2019). Aquaculture production is dominated by
China's fish and crab ponds. Yuan et al. (2019) found a tripling of the CH4 emissions per hectare per year
when operating a fishpond instead of a rice paddy field. This finding contradicts Liu et al. (2016), which cal-
culated EFs from aquaculture to be half as large as those from rice paddy fields. Future work needs to recon-
cile the contradictory estimates from this source and to have aquaculture emissions better incorporated into
global inventories such as EDGAR.

3.5. Biomass Burning

Large‐scale biomass burning CH4 emissions are derived from satellites, either based on burned area and fuel
load modeling or through satellite detection of active fires and fire radiative power, which are empirically
converted to carbon or dry matter emissions (Kaiser et al., 2012; van der Werf et al., 2017). Those fire emis-
sions are then multiplied with an EF that governs what fraction of the carbon or dry matter combusted is
emitted as CH4 (Akagi et al., 2011; Andreae, 2019).

Burned area has been routinely measured from National Aeronautics and Space Administration (NASA;
e.g., Terra and Aqua Moderate Resolution Imaging Spectroradiometer, MODIS) satellites with almost 20
yr of high‐quality coarse (500 m) resolution. Even though the coarse resolution burned area algorithms per-
form well over large fires, events that burn only a fraction of the satellite pixel are more difficult to detect.
These are typically fires associated with agricultural burning or deforestation and estimates suggest they
could increase the global amount of burned area by about 30% or more (T. Liu et al., 2019; Randerson
et al., 2012; Roteta et al., 2019). European Space Agency Sentinel and NASA Landsat satellites are paving
the way for moderate resolution (20–30 m) burned area detection (L. Boschetti et al., 2015; Giglio et al.,
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2018; Padilla et al., 2015; Roteta et al., 2019). There is a need to integrate findings from these new medium‐

resolution satellite data into existing coarse resolution approaches. Some of the most frequently used coarse
resolution satellite sensors (e.g., MODIS) are coming to their lifetime end and a better understanding of the
complementarity of coarse and moderate approaches is necessary to maintain a consistent time series over
the record.

Geostationary satellites have been used as well, mostly to monitor spatiotemporal variability in fire activity
(Roberts &Wooster, 2008). Although they suffer from having a coarse spatial resolution, their superior tem-
poral information should be used to complement existing (such as MODIS) and new (such as Sentinel‐2)
polar‐orbiting satellite information to better understand diurnal variability in addition to the earlier men-
tioned role of small fires. The current suite of geostationary satellites is reasonably well positioned to moni-
tor global fire activity (except in high latitudes). The newest generation geostationary satellites include the
National Oceanic and Atmospheric Agency (NOAA) GOES‐16 satellite, the Japan Meteorological
Agency's Himawari‐8 and Himawari‐9 satellites, and the European Space Agency's Meteosat Second
Generation satellite series. However, because these satellites carry different instruments and because pixel
size increases with view angle, harmonization is required for a consistent data set (e.g., Hall et al., 2019).

Converting burned area to fuel consumption (amount of biomass combusted per unit area burned) relies
mostly on biogeochemical modeling or the combination of field measurements extrapolated in space and
time using satellite data (van der Werf et al., 2017; Veraverbeke et al., 2015; Wiedinmyer et al., 2011).
However, key limitations remain. First, satellite‐based Lidar systems have enabled a better quantification
of standing biomass loadings and thus fuel availability and consumption, but fires in general consume
mostly litter and soil carbon. While the two are related, there are no satellite‐based observations of litter
and soil carbon, and its variability is therefore not well studied. In general, most information on fuel con-
sumption is derived from field studies and several regional programs are underway (e.g., NASA's Arctic—
Boreal Vulnerability Experiment, the Fire Influence on Regional and Global Environments Experiment
and the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) to increase
the number of measurements. Second, EFs are also mostly derived from field measurements, which include
aircraft data collected from smoke plumes and on larger scales from the ratios of trace gases measured by
satellites. The current body of EF measurements currently enables only a biome‐level breakdown, leaving
spatial and temporal variability of EFs within biomes unknown (Akagi et al., 2011; van Leeuwen et al.,
2013). Tropical peat fire EFs were derived from lab studies until the first in situ measurements in 2015 indi-
cated that the EF was actually only half of the lab‐based value (Stockwell et al., 2016; Wooster et al., 2018),
lowering total global biomass burning CH4 emissions (van der Werf et al., 2017) by almost 10%. An impor-
tant next step is that field experiments need to be expanded to (sub)tropical regions where fire emissions are
an order of magnitude larger than those of temperate and boreal regions. The outcomes of such field experi-
ments then need to be integrated into fire models.

3.6. Geologic Seeps

Geologic seepage is thought to be the third largest natural source of CH4 after wetlands and freshwater sys-
tems (Etiope et al., 2019; Saunois et al., 2016). The degassing of CH4 occurs through fivemain categories: gas‐
oil seeps, mud volcanoes, microseepage, submarine seepage, and geothermal and volcanic manifestations.
Emissions from geologic seepage are difficult to distinguish from anthropogenic fossil fuel production and
use due to their similar isotopic signature and colocated source origin (Petrenko et al., 2017; Schwietzke
et al., 2016).

Estimates of global seepage CH4 emissions exhibit up to a factor of 5 difference based on methodology.
Estimates of 30–76 Tg/yr (Etiope et al., 2019; Saunois et al., 2016) are based on process‐based modeling, sta-
tistical evaluations of experimentally determined EFs and activity data. These estimates are consistent with
top‐down evaluations using δ13C‐CH4 and C2H6 (Dalsøren et al., 2018; Nicewonger et al., 2016; Schwietzke
et al., 2016). In contrast, Petrenko et al. (2017) proposed a substantially lower global estimate, ranging from
0–15.4 Tg/yr based on Δ14CH4 of the air trapped in Antarctic ice cores 11,000–12,000 yr ago.

Future research could help to reconcile these estimates and improve current global seepage estimates in two
ways. First, mud volcanoes can be considered point sources with spatial dimensions comparable to oil and
gas production/processing facilities. Their emission estimates could be empirically verified using the types of
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offsite downwind measurement methodologies employed during oil and gas field campaigns over the last
decade in the United States and internationally (e.g., Conley et al., 2017). Focusing on some of the largest
emitters worldwide, for example, in onshore areas around the Caspian Sea could be used to validate the esti-
mation methods used in global models (Etiope et al., 2019). Second, microseepage, the diffuse exhalation of
CH4 from the ground, not related to gas‐oil seeps or mud volcanoes, is considered to be the largest geological
CH4 source globally (Etiope & Klusman, 2010). Microseepage EFs are well known, based onmore than 1,500
flux measurements in 19 different petroleum provinces (Etiope et al., 2019). The largest uncertainty in
microseepage global emission is in the global area where microseepage occurs (dominantly in petroleum
fields, e.g., Schumacher, 1996). Positive CH4 fluxes to the atmosphere related to microseepage are believed
to occur in 57% of the global continental petroleum field area, resulting in a total potential microseepage area
of about 13 million km2 (Etiope et al., 2019). Such data need, however, to be better constrained.
Microseepage can be effectively detected over wide areas using optical remote sensing techniques such as
aerial photography, airborne and satellite multispectral scanner data (e.g., van der Meer et al., 2002). Such
investigations, performed on different petroleum systems and sedimentary basins, can significantly improve
our understanding of microseepage areal distribution.

3.7. Uptake of CH4 by Soil

Soil methanotrophy by upland ecosystems is the only known biological sink for CH4 and is thought to
remove a similar amount as the global emissions from rice cultivation (e.g., Curry, 2007; Murguia‐Flores
et al., 2018; Saunois et al., 2016; Zhuang et al., 2013). Rates of upland soil methanotrophy are controlled
by the concentration of CH4 in the atmosphere and by soil temperature, soil moisture, and soil nitrogen con-
tent. Globally, the upland soil sink is expected to become stronger in the 21st century as atmospheric CH4

mole fractions rise and soil temperatures increase, and this could partially offset any increased emissions,
although nitrogen deposition can inhibit methanotrophy (Zhuang et al., 2013). Therefore, better under-
standing of this removal process is required when simulating future CH4 concentration pathways.

There are large uncertainties in the spatial and temporal distribution of the upland soil CH4 sink due to the
sparsity of field measurements. There are four areas that require further measurements: (i) Measurements
spanning different seasons and ecosystems of the rate of uptake are required, particularly in the Southern
Hemisphere where only very few measurements currently exist (Dutaur & Verchot, 2007). The sparsity of
these measurements makes it challenging to validate process‐based models of soil methanotrophy. (ii)
Better representation of different ecosystems in measurement of the microbial oxidation rate (Luo et al.,
2013). There is considerable variability between ecosystems in this fundamental parameter that controls
howmuch CH4 in the soil is able to be consumed bymicrobes. (iii) Better ecosystem coverage of the tempera-
ture response of methanotrophy (e.g., Castro et al., 1995; del Grosso et al., 2000). (iv) Measurements to better
establish the relationship between soil nitrogen content and the inhibition of soil methanotrophy (e.g.,
Nesbit & Breitenbeck, 1992), so that the inhibitory effect can be better accounted for in future simulations.

4. Top‐Down Source and Sink Estimation at Global and Regional Scales

Atmospheric observations can be used to quantify CH4 sources and sinks at global and regional scales, when
combined with atmospheric chemical transport model (CTM) simulations, statistical “inverse” estimation
methods and a priori information from inventories (section 3). Whist these methods have been used exten-
sively in the recent literature, the results of studies by different groups can differ substantially, even when
similar data sets are used (e.g., emissions for India reported by Ganesan et al. (2017) and Miller et al.
(2019), which both rely primarily on GOSAT data, vary by ~70%). These differences imply that significant
challenges remain in both the atmospheric model simulations and statistical frameworks used to estimate
emissions. Sections 4.1 and 4.2 discuss global and regional emissions estimation and sections 4.3 and 4.4
review the CTMs and inverse methods used in these approaches. Finally, the estimation of sector‐level emis-
sions in either global or regional studies is discussed in section 4.5.

4.1. Global Estimation

Recent investigations of the CH4 budget using global models span a range of complexity, both in the atmo-
spheric model used, the number and type of parameters being estimated, and the statistical methods used
for parameter estimation and uncertainty quantification. Models require as input a set of surface flux
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estimates that resolve sources and sinks at the model grid scale and, ideally, at the model integration time
step. Estimation of the two‐dimensional (2‐D) or three‐dimensional (3‐D) atmospheric mole fraction field
requires parameterization of atmospheric advection, turbulent transport processes (e.g., boundary layer
turbulence and convection), CH4 losses via reaction with OH, and losses in the stratosphere. Sources and
sinks of CH4 are then estimated by comparison of the model mole fraction fields with global measurement
data sets (such as those discussed in section 2) through the use of a statistical inverse modeling framework.
4.1.1. Global Atmospheric Chemical Transport Modeling
The simplest global models are one‐dimensional or 2‐D, where the atmosphere is separated into some num-
ber of vertical and/or zonal mean boxes (Cunnold et al., 2002; Rigby et al., 2008; Turner et al., 2017). These
models can only be used to estimate global or zonal average sources and sinks and can suffer from biases
due to the lack of resolved 3‐Dmeteorology (Naus et al., 2019). However, because of their computational effi-
ciency, boxmodels can be run for a very large range of input parameter values. Therefore, the benefit brought
about by the use of box models lies in the ability to explore a wide range of important but uncertain para-
meters in the global CH4 budget, such as [OH], or isotopic source signatures (e.g., Rigby et al., 2017;
Turner et al., 2017

Global models in 3‐D additionally separate the atmosphere into longitudinally resolved boxes and simulate
atmospheric transport either off‐line, using archived meteorological analyses (e.g., Fung et al., 1991; Hein
et al., 1997; Patra et al., 2011; Figure 6), or online, at the same time as the atmospheric physical state is being
estimated, based on the assimilation of meteorological observations (e.g., Patra et al., 2016). Compared to
box models, 3‐Dmodels allow surface fluxes to be resolved at a range of scales; some studies have estimated
emissions at continental scales (e.g., Bruhwiler et al., 2014; Chen & Prinn, 2006; Mikaloff Fletcher et al.,
2004b; Miller et al., 2019), while others have estimated grid‐scale fluxes, albeit by typically assuming spatial
correlations between grid cells to make the problem less underdetermined (e.g., Bergamaschi et al., 2013;
Bousquet et al., 2011; Houweling et al., 1999). Many studies attempt to estimate emissions frommultiple sec-
tors, making use of the differing spatial or temporal distribution of individual sources (e.g., Chen and Prinn
(2006), section 3) or by using δ13C‐CH4 or other tracer observations (e.g., Helmig et al., 2016; McNorton
et al., 2018; Mikaloff Fletcher et al., 2004a, 2004b), section 4.5).

Figure 6. (a) Three‐dimensional simulation of surface CH4 mole fractions by the MOZARTmodel (Rigby et al., 2012) dri-
ven by estimates of CH4 emissions and removal by sinks. (b) Wetland (Bloom et al., 2017), agriculture, and fossil fuel
emissions (Janssens‐Maenhout et al., 2019), with the dominant source shown in each grid cell. An animation of CH4 mole
fractions is provided in the supporting information.
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To make effective use of the rapidly growing global monitoring system, 3‐D models will be required, rather
than box models. However, it must be noted that, even when driven by common emissions and loss fields,
global 3‐D CTMs are known to vary in their simulations of atmospheric CH4 mole fractions and CH4 loss
rates (e.g., Palmer et al., 2018; Patra et al., 2011). Differences in CH4 simulations are caused by differences
in key transport phenomena, such as interhemispheric and stratosphere‐troposphere exchange rates, which
are themselves likely to be driven by factors such as model resolution and parameterizations of unresolved
features such as convection or turbulence. Furthermore, global models, which are usually run at resolutions
on the order of 1° longitude and latitude or more, can suffer from severe “representation” or “mismatch”
errors, caused by the need to represent point measurements in a coarsely gridded model atmosphere (e.g.,
Chen & Prinn, 2006). Therefore, these models require improvements in their resolution and physical para-
meterizations, and new methods are needed for the robust evaluation of model performance (section 4.3).
Finally, in order to fully estimate uncertainties, it is important that future 3‐Dmodel estimation frameworks
include systematic and nonlinear uncertainties that, so far, only box model studies have been able to rigor-
ously explore (section 4.4).
4.1.2. Global Hydroxyl Radical Concentration Estimation
Because it is the largest single term in the global atmospheric CH4 budget, perhaps the most important chal-
lenge for modeling CH4 at the global scale is the quantification of the OH sink. Estimates of [OH] made
using different approaches vary significantly in both absolute [OH] as well as the size of year‐to‐year varia-
tions (Figure 7). While observations of methyl chloroform (CH3CCl3, MCF) trends have been widely used for
this purpose, it is known that uncertainties in its emissions can lead to uncertainties in the derived [OH],
similar to, or larger than, the inferred [OH] variability (Rigby et al., 2017; Turner et al., 2017). In the coming
years, estimation of [OH] using MCF will become more uncertain as its atmospheric mole fraction declines
(Prinn et al., 2018). While some recent MCF, budget‐based studies have suggested that [OH] changes could
be a major contributor to recent methane growth rate variability, albeit with very large uncertainty (Rigby
et al., 2017; Turner et al., 2017), atmospheric photochemical models do not tend to find evidence for strong
variability in global [OH] (e.g., Figure 7, Nicely et al., 2018). However, photochemical models disagree sub-
stantially in their predictions of the average global [OH] (Voulgarakis et al., 2013). Given these considera-
tions, a primary challenge is to find new, more accurate, methods for inferring global [OH]. There are
several areas of research that may lead to stronger constraints, which include developments in atmospheric
photochemical model predictions, improved “budget” methods, in which [OH] is inferred using observa-
tions of some reduced gases along with estimates of their emissions, and “proxy”methods that use observa-
tions of gases whose production is linked to [OH]. Whichever methods advance our understanding of [OH]
magnitude and variability, uncertainties will remain, and it is vital for the uncertainties due to [OH] to be
included in inverse modeling systems (section 4.4).

Improvements in atmospheric photochemical models will require developments inmodel parameterizations
(e.g., incorporation of new reactions or kinetics into chemical mechanisms), atmospheric physical state

Figure 7. Anomalies of [OH] in the troposphere estimated using different approaches, includingmethyl chloroform based
estimates and photochemical models. Anomalies are presented to indicate the magnitude of interannual variability in
[OH]. (Source: Julie Nicely, Nicely et al., 2018).
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estimates, and emissions inventories (i.e., for reactive gases which participate in the formation of OH).
Recent studies have quantified sensitivities of global model [OH] to various inputs and parameterizations,
which may help modelers better understand how global [OH] simulations could be improved in future
(López‐Comí et al., 2016; Nicely et al., 2017; Ryan et al., 2018). Alternatively, more comprehensive observa-
tions of key tropospheric gases (e.g., O3 and H2O) may allow estimation of [OH] variability using relatively
simplified chemical schemes (e.g., Nicely et al., 2018).

In terms of indirect inference of [OH] by estimation of the loss rate of trace gases, new approaches are
needed that can provide a stronger constraint than is currently possible from the widely used MCF method.
(i) It has been proposed that observations of multiple reduced gases with atmospheric lifetimes of a few years
(e.g., some HCFCs or HFCs) may improve such estimates, particularly if emissions can be inferred simulta-
neously with losses, by considering factors such as the observed interhemispheric gradient (e.g., Huang &
Prinn, 2002; Liang et al., 2017). Ideally, a compound, or compounds, would be found where all global emis-
sions could conceivably be monitored, for example, in the case of a gas that is only manufactured by a small
number of producers that would be willing to make their atmospheric emissions known. However, such a
“tracer of opportunity” has not yet been identified. (ii) [OH] can be inferred using observations of 14CO,
which is produced in the upper atmosphere and has a lifetime with respect to OH of 2–3 months
(Manning et al., 2005). Stronger constraints on [OH] from 14CO observations would likely require a more
extensive global monitoring network, as 14CO is strongly influenced by regional [OH], and the current net-
work is more sensitive to high latitudes than the tropics, where the majority of OH is produced (Krol et al.,
2008). Furthermore, model representations of stratosphere‐troposphere exchange will require improvement,
to ensure accurate transport from the upper atmosphere, where 14CO is produced, to surface observation
sites. (iii) CH4 data themselves can potentially be used to infer [OH] in addition to other terms in the global
CH4 budget, provided that there is high enough spatial density and global coverage in the measurements
(Maasakkers et al., 2019; Y. Zhang et al., 2018). Such an approach relies on the fact that, compared to obser-
vations of lower abundance compounds such as MCF, dense observations of CH4 are possible from space.
(iv) Potentially, the most accurate budget‐based approach would involve the intentional release and global
observation of a tracer compound that reacts primarily with OH. Such an approach has been proposed at
urban or regional scales (Davenport & Singh, 1987; Prinn, 1985; White et al., 2014) but whether such a
method could be feasibly scaled to monitor global [OH] over multiyear timescales is not clear. Such an
experiment would likely involve very large costs (which would need to be compared to other costly activities
such as satellite missions), international cooperation, partnerships with industry (who would need to man-
ufacture large quantities of tracer), and technological advances to develop sensitive detectors.

To complement such budget‐based approaches, complementary [OH] “proxy” estimates may also be possi-
ble. It has recently been proposed that, due to the close relationship between formaldehyde (HCHO) produc-
tion and [OH] in the remote atmosphere (i.e., above the ocean), remotely sensed HCHO fields could provide
amethod by which to map [OH] (Wolfe et al., 2019). Further validation and additional satellite data sets may
be required to extend this method to the estimation of long‐term [OH] trends.

4.2. Regional Estimation

Inversions to estimate emissions for individual regions are distinct from global inversions in several impor-
tant aspects. First, boundary conditions are required, unlike their global counterparts, because air resides in
regional domains for at most a few weeks. Therefore, CH4 loss due to OH typically can be neglected and
uncertainties in the sinks are not limitations in regional inversions. In addition, on the timescales of the
simulations, uncertainties in the ability to model complex stratospheric‐tropospheric exchange processes
are mitigated. The limited geographical extent of regional models, and therefore the reduced computational
cost, allows for emissions to be estimated at much finer scales (order tens to hundreds of kilometers) com-
pared to global inversions (order thousands of kilometers), provided the density of measurements
exist (Figure 3).

The potential success of an inverse modeling approach for national estimation of CH4 emissions is funda-
mentally linked to several key factors: the density and frequency of CH4 mole fraction and isotopic ratio
measurements, access to high‐resolution (kilometer‐scale) three‐dimensional meteorological data, the abil-
ity to model atmospheric dispersion, information on the spatial and temporal variability in emission sources,
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understanding the topography in the areas surrounding measurement stations, and the ability to differenti-
ate between natural and anthropogenic emissions within a country. The latter point is important for policy
since countries account for their anthropogenic emissions and national‐scale inverse modeling estimates are
most useful if they can provide an independent constraint on the anthropogenic contribution. The impor-
tance of each of these factors varies from country to country but each needs to be considered when assessing
the national emission estimates from inverse modeling.

An observation is most sensitive to its surrounding emissions and its sensitivity decreases rapidly as the dis-
tances increase. A network of tall (~100 m) tower observations at subdaily resolution spaced every ~300 km
is potentially sufficient to define an annual national CH4 emission total, although the network must be
designed with the consideration of prevailing meteorology. Critically, these measurements must not be
influenced by local emissions that lie within a few model grid boxes from the site, as these processes will
not be able to be resolved by the model.

The comparison of reported national CH4 emission estimates with those from inverse modeling in some
cases show some marked differences and can be used to identify sources of discrepancy. Reported U.K.
CH4 emissions in the early 1990s are a factor of 2 higher than those estimated through inverse modeling
for reasons that are not well understood (Brown et al., 2019). Top‐down estimates in the United States
and EU are larger than reported (Bergamaschi et al., 2018; Turner et al., 2015), whereas top‐down emissions
in China are lower than inventories (Miller et al., 2019; Thompson et al., 2015), highlighting that differences
are region specific and must be evaluated for each country.

Provided that there is adequate measurement and modeling capability in place, the main limitation in the
top‐down regional estimation approach is in the sizable systematic uncertainties in the modeling systems.
The range of choices for the meteorological drivers, the atmospheric transport model, and the inversion
methodology have been shown to result in estimates for national‐scale emissions that differ significantly
using similar measurement data sets (Bergamaschi et al., 2018; Ganesan et al., 2017; Miller et al., 2019).
Therefore, to make top‐down estimates more useful for policy makers, the challenge is to understand why
these differences occur (sections 4.3 and 4.4) and ultimately to improve the accuracy of emissions estimation.

4.3. Atmospheric CTM Improvements

The disagreements between model predictions of atmospheric CH4 mole fractions that result from errors in
CTM transport are systematic uncertainties that would result in inaccurate (biased) inference of emissions in
inverse modeling studies at both global and regional scales. Some improvements in atmospheric model
transport may occur naturally as the meteorological observing and forecasting system evolves. Increased
model resolution, brought about by developments in high‐performance computing, may yield improved
CH4 simulations, for example, by reducing model‐measurement representation errors or allowing atmo-
spheric transport processes which were previously parameterized to be resolved. However, it is likely that
model parameterizations themselves need to be modified and tested (e.g., Krol et al., 2018).

By whatever means advances in model physics occur (which is beyond the scope of this paper), it is critical
that methods exist to test CTM transport. Model intercomparisons (e.g., Krol et al., 2018; Patra et al., 2011)
and model parameter sensitivity studies using, for example, Gaussian process emulation (e.g., Harvey et al.,
2018) are likely to help target where developments are needed. However, they do not indicate whether model
transport is accurate. Tests of model transport require knowledge of the exact magnitude and time of release
of some gas, which is measured with sufficient spatial density and over appropriate timescales to test rele-
vant model transport processes. There have thus far been very few long‐range intentional release tracer
experiments (e.g., Ryall & Maryon, 1998) that have attempted to quantify the accuracy of CTMs. In future,
additional intentional release experiments will be needed, particularly when attempting to estimate emis-
sions that are important for policy. Measurements of radon (222Rn) may provide constraints on model trans-
port, based on knowledge of its emissions from the Earth's crust (Jacob & Prather, 1990). However, recent
studies have highlighted the need for further information on the influence of factors such as soil moisture
on its emissions (Karstens et al., 2015). Alternatively, it may be possible to identify a “tracer of opportunity,”
where some industrially produced inert gas is known to be released from some well‐defined locations, by
producers or users who are willing to share high‐quality release rate estimates. In either case, the well char-
acterized surface emission would have to be sufficiently large to be observable at scales of 500–1,000 km for
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evaluation of regional dispersion processes and potentially between hemispheres for global model evalua-
tion. Background concentrations would need to be well known, and in the case of an intentional release,
the impact on climate, ozone depletion, and human health would need to be small. If such an experiment
existed, individual CTMs and their associated underpinning meteorology could be assessed and character-
ized and ultimately improved.

Improvements in regional and global CH4 simulations will also occur as a result of developments to each of
the bottom‐up data sets discussed in section 3 because they are used as inputs to atmospheric models. It is
important that these data sets are spatially resolved, ideally at a resolution greater than or equal to the atmo-
spheric model. Equally importantly, they should also be resolved by time at the highest resolution possible.
Many top‐down estimates currently assume that emissions are constant over weekly to monthly periods.
Higher‐frequency variability in emissions, unless well represented in bottom‐up models, can lead to signifi-
cant, unaccounted‐for, error in top‐down estimates. Therefore, in addition to the totals currently reported by
individual nations to the UNFCCC, emission inventories broken down by sector, on regular grids, and time‐
resolved should be considered best practice by all countries.

4.4. Inverse Methods and Uncertainty Quantification

The inference of CH4 sources and/or sinks using measurements of atmospheric mole fractions and coe-
mitted species requires a statistical inverse modeling framework. These frameworks account for the varying
“sensitivity” of each measurement to parameters of interest (e.g., emissions) and attempt to quantify the
influence of measurement and model uncertainties on the derived quantities. Given the underdetermined
nature of the inversion problem for CH4, a Bayesian approach is usually followed, in which a priori estimates
of sources or sinks (e.g., inventories described in section 3) are adjusted to improve the agreement between
the data and models. To better understand the top‐down CH4 budget, there are a number of areas where
improvements are needed: quantification of uncertainties, including systematic and nonlinear effects, and
algorithms that can utilize high‐dimensional data to estimate high‐dimensional outputs.

Traditional Bayesian methods require an estimate of probability density functions (PDFs), which describe
the uncertainty in the a priori constraints and the expected level of agreement between the data and the
model. Very often, because of their helpful mathematical properties, these PDFs are assumed to follow spe-
cified Gaussian distributions. However, there are known to be two major problems with this approach. First,
the a priori uncertainty and model‐measurement uncertainty are often very poorly quantified, making
robust a posteriori uncertainty quantification challenging. Second, Gaussian PDFs can lead to unphysical
solutions (e.g., negative emissions). To address these limitations, recent developments have used Markov
chain Monte Carlo approaches (e.g., Ganesan et al., 2014; Jeong et al., 2016; Miller et al., 2014; Rigby
et al., 2011). These methods allow PDFs of any form to be used to constrain the inversion (e.g., the lognormal
distribution, which is not defined below 0) and, when applied in hierarchical Bayesian frameworks, can
allow the magnitude of uncertainties to be themselves uncertain. The limitation of Markov chain Monte
Carlo methods is that, because they require the a posteriori PDF to be approximated through sampling, they
become computationally expensive, and sometimes prohibitively so, when applied to high‐dimensional pro-
blems and when estimating spatiotemporal uncertainties.

The above developments in inverse methods have focused primarily on the treatment of random uncer-
tainties. However, it is possible that systematic effects, such as model parametric errors, dominate top‐
down CH4 uncertainty budgets. These effects may be particularly important where uncertain parameters
are nonlinearly related to atmospheric observations (e.g., uncertainty in isotopic source signatures, or
[OH]). Recent studies have investigated such uncertainties in simple box models (Naus et al., 2019;
Rigby et al., 2017). However, methods are needed that can account for systematic, nonlinear uncertainties
in inversions using more complex and computationally expensive 3‐D global and regional models with
high‐dimensional outputs.

As data density has increased, there has been a push toward inverse methods that can efficiently use high‐
dimensional data to estimate high‐dimensional parameter spaces. The most common in use are adjoined
CTMs, in which the sensitivity of the model outputs to various inputs is simulated directly by code that com-
plements the forward model (e.g., Houweling et al., 1999) or ensemble methods that approximate these
sensitivities (e.g., Peters et al. (2005). As remote sensing further increases the amount of data available for
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top‐down source and sink estimation at finer spatial and temporal scales (
section 2.3), such methods are likely to become increasingly important.
However, at present, these frameworks rely heavily on Gaussian
assumptions, are sensitive to poorly quantified uncertainties, often
neglect spatiotemporal correlations in uncertainties, and do not
routinely incorporate systematic uncertainties. Therefore, a major
challenge for the coming years will be to develop high‐dimensional
inverse modeling systems, which allow for robust uncertainty
quantification, as described in the previous paragraphs.

A further area for development that may yield new insights for CH4 is the
direct estimation of process model parameters using atmospheric data
(e.g., as described by Houweling et al., 2017). Such an approach combines
flux and atmospheric models into the same estimation framework, so that
flux model parameters can be constrained using the data. Such an
approach has been explored for CO2 (Koffi et al., 2013; Peylin et al.,
2016) but not yet for CH4. The potential advantage of such a system is that,
in principle, process‐level understanding can be gained, without the need
to propagate information via the estimation of a high‐dimensional flux
field. However, the technical challenge in coupling together different
models, and ingesting disparate data types (e.g., mole fraction and flux
measurements) is substantial.

4.5. Sector Estimation Using Tracers

Because CH4 mole fraction measurements are not source specific, top‐down emissions estimation at all
scales (global, national, and urban) often rely on bottom‐up inventory trends and spatial patterns for source
sector attribution (Bruhwiler et al., 2014; Houweling et al., 2017; Schwietzke et al., 2016, section 3). In order
for sectoral estimation to not rely on bottom‐up spatial separation, inversions would require additional infor-
mation, often in the form of source specific tracers or CH4 isotopic ratios.

Global δ13C‐CH4measurements have been interpreted as part of many studies of global CH4 (Bousquet et al.,
2006; McNorton et al., 2018; Nisbet et al., 2016, 2019; Rice et al., 2016; Rigby et al., 2017; Schaefer et al., 2016;
Schwietzke et al., 2016; Turner et al., 2017; Worden et al., 2017). It has been shown that incorporation of
δ13C‐CH4 and/or δD‐CH4 measurements into regional and global inverse modeling frameworks provides
some additional sector‐level constraint, compared to mole‐fraction‐only inversions (Rigby et al., 2012).
However, interpretation in these studies is complicated by the fact that source signatures are highly uncer-
tain or variable (Schwietzke et al., 2016; Sherwood et al., 2017). Ganesan et al. (2018) shows that incomplete
accounting of variations in source signatures, such as spatial variability, results in significant biases when
used to interpret atmospheric measurements (source signature characterization is discussed in section 2.2
). Furthermore, it must be noted that the well‐mixed isotopic signal is also slow to reach steady state com-
pared to the relatively rapid change in CH4 mole fraction for a given change in any sources or sinks. Tans
(1997) shows that it takes the order of a century for δ13C‐CH4 to equilibrate fully in the atmosphere.
Thus, use of δ13C‐CH4 to diagnose flux changes on the global scale requires longer time series analysis
and appropriate spin‐up in global atmospheric modeling studies.

Source tracers have been used to estimate a variety of CH4 sectors by assuming that the ratio between
emitted CH4 and the tracer is well characterized. To illustrate the challenges with this method, the example
of the fossil fuel sector through measurement of atmospheric C2H6, is discussed. The main limitations are
that (i) the emitted C2H6:CH4 ratio is highly variable (up to order of magnitude) from well to well (oil/
gas), mine to mine (coal), and to some extent across country‐level averages (Sherwood et al., 2017). More
data are needed at this scale, particularly for the Middle East, Europe, and Africa (Sherwood et al., 2017).
(ii) The C2H6:CH4 ratio of produced gas can vary substantially over time scales of years and perhaps decades
as shown in Lan et al. (2019) and Figure 8. C2H6:CH4 source ratios from oil/gas production are largely a
function of the “wetness” of the produced gas (i.e., the ratio of coproduced oil and gas) (Dalsøren et al.,
2018; Helmig et al., 2016; Höglund‐Isaksson, 2017; Kort et al., 2016; Schwietzke et al., 2014a). Considering
that gas production roughly doubled over the past three decades while oil production increased by only

Figure 8. Ratios of mole fraction enhancement (defined as the deviation
from background) in C2H6 to CH4 derived from surface flask measure-
ments at Southern Great Plains, Oklahoma (SGP‐s). These enhancement
ratios are equivalent to oil and gas emission ratios when the enhancements
are largely due to emissions from oil and gas sources, as is the case at SGP‐s.
(Source: Lan et al., 2019).
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half that rate (U.S. Energy Information Administration, 2016), the C2H6:CH4 source ratios of combined
oil/gas should not be expected to remain the same. (iii) The C2H6:CH4 ratio downstream of oil/gas produc-
tion and processing (i.e., pipeline transmission, local distribution, and end‐use) can vary over time due to
changing market demands of hydrocarbons (Schwietzke et al., 2014b). Long‐term observations of aircraft
vertical profiles downwind of U.S. oil and gas production regions have recently confirmed this trend (Lan
et al., 2019). Monitoring these trends is important, for example, through local measurements or by making
international data on C2H6 production publicly available.

Lan et al. (2019) show that incorrect U.S. oil and gas emission trends can be derived if the variability in C2H6:
CH4 ratios are not accounted for. Global CH4 emission trends (e.g., Helmig et al., 2016) also acknowledge the
discrepancy in estimated CH4 trend magnitude and timing when using C2H6:CH4 ratios, CH4 inversions
and/or isotope data. The three factors discussed above indicate that more widespread long‐term and
region‐specific C2H6:CH4 source ratio measurements would be required.

Despite the difficulties in reconciling estimates using different methods, the United States is comparatively
well monitored for both CH4, CH4 isotopic ratios, C2H6:CH4 source ratios and atmospheric C2H6 data. Other
regions of the world with growing contributions from fossil fuel (e.g., Asia and Africa) will require a step
change in the number of measurements made to make use of this type of methodology.

5. Urban Emissions Quantification

The most important anthropogenic CH4 sources at urban scale are typically the natural gas distribution
infrastructure and the waste sector (e.g., Nangini et al. (2019). Beyond the policy and scientific interest, nat-
ural gas is also considered a safety issue as previous leakages have caused fatal explosions and displaced
thousands of residents (Conley et al., 2016).

The bottom‐up methodologies used to quantify urban CH4 emissions are not all consistent and can thus not
always be easily compared across cities. Furthermore, studies that compared reported emissions for urba-
nized regions with estimates from local and scientific inventories (e.g., EDGAR) sometimes find significant
inconsistencies for CH4 (e.g., Chandra et al., 2019; Lowry et al., 2001; Ren et al., 2018; Vogel et al., 2012;
Wunch et al., 2009). Cities with routine reporting are usually situated in Organisation for Economic Co‐
operation and Development countries and limited data are available from, for example, African, South
American, and Asian (with the exception of Chinese) cities. As infrastructure can strongly differ regionally,
this limits the ability to assess urban CH4 globally using bottom‐up techniques. Important efforts are under-
way to harmonize bottom‐up techniques and standards for urban areas by establishing tools such as the
Greenhouse Gas Protocol (https://ghgprotocol.org) and implementing common reporting platforms like
the UNFCCC's NAZCA (https://climateaction.unfccc.int/). Adopting UNFCCC methodologies into report-
ing standards will be crucial to also increase consistency with national bottom‐up efforts.

Because uncertainties in inventory approaches are larger on smaller scales (due to the complexities of spa-
tially and temporally disaggregating emissions), the urban scale is of particular interest for top‐down studies
(e.g., within theWMO Integrated Global Greenhouse Gas Information System; IG3IS, https://ig3is.wmo.int/
en). Top‐down studies on urban CH4 emissions also show a bias toward cities in Organisation for Economic
Co‐operation and Development countries rather than developing countries. Many of these studies rely on
small monitoring networks of one to six measurement stations, which can quantify the overall emissions
of a city or metropolitan area but does not allow emissions to be resolved at the neighborhood scale. The lar-
ger local enhancements at urban scales (over regional and global scales) in atmospheric CH4 mole fraction
might allow use of lower‐cost medium precision sensors as long as they can be shown not to introduce sys-
tematic biases in observations. The improved observational density could then allow more spatially explicit
emission estimates to be derived. A complete observing system would include a dense network of lower‐cost
in situ sensors combined with a network of classical instruments. These include measurements of isotopic
ratio and coemitted species, recently developed ground‐based remote sensing instruments (e.g., Frey et al.,
2019) and data from satellite‐based instruments that are deployed in an urban targeting mode (as planned
for by, e.g., GOSAT‐2).

Large uncertainties can result in urban top‐down studies due to the difficulty in resolving fine‐scale pro-
cesses. Very high resolution (i.e., less than a kilometer) meteorological data are needed in urban areas
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that include, for example, town‐energy balance modules to account for urban heat island effects or
turbulence introduced by traffic or buildings. These are promising but are computationally expensive. A
recent comparison of urban‐scale models for air quality found that current state of the art transport
models still displays important differences and need to be harmonized (Thunis et al., 2016). Such a fully
integrated system has yet to be deployed, but efforts such as the Jet Propulsion Laboratory Megacities
project in Los Angeles (Figure 9) and other IG3IS demonstration cities are leading such efforts.

Besides quantifying urban CH4 emissions using fixed sites, XCH4, aircraft data and inverse modeling studies,
measurements from simpler vehicle‐based platforms have been hugely successful in identifying the impor-
tance of natural gas infrastructure in different cities (e.g., Lamb et al., 2016; McKain et al., 2015; Phillips
et al., 2013). Such surveys often do not rely on exact quantification of CH4 emission rates from each source
location in the city but can use more empirical methods to translate concentration enhancements into emis-
sion rate estimates (e.g., von Fischer et al., 2017; Weller et al., 2018). Using this approach, it is possible to
quickly rank sources into categories, which then allow more efficient repair schedules and targeted mitiga-
tion efforts. Mobile surveys in U.S. cities frequently found fat‐tail distributions (i.e., that CH4 emissions of
the city are dominated by a few localized sources), which allows significant emission reductions at limited
cost when effective partnerships with public utilities are established (Hopkins et al., 2016). To be able to
track the success of interventions, a long‐term strategy for implementing observations is needed, but only
few regions/cities have started using, for example, the public transit system as a routinely operating mobile
platform (Lin et al., 2018). Deployment of unmanned aerial vehicles is also a key advancement as it signifi-
cantly reduces cost and unmanned aerial vehicle platforms are becoming more readily available (e.g.,
Andersen et al., 2018; Brownlow et al., 2016). Novel high‐altitude platforms would also offer the additional
ability for longer term observations over urban areas from a fixed point at approximately 20–50 km above
ground level (Gonzalo et al., 2018).

The ability to provide useful information to stakeholders hinges on the ability to link CH4 emission drivers
(e.g., age of infrastructure, population density, and climatic conditions) to the observed atmospheric varia-
tions. Advancing research at urban scale can leverage many of the developments in the aforementioned sec-
tions, but due to the scale, some issues are specifically challenging. Urban areas will always strongly differ,
for example, in size, population density, economic power, available technical skill, political will, and

Figure 9. Concept of an urban greenhouse gas observation network for the Los Angeles metropolitan area, which
includes ground‐based in situ measurements, vehicle‐based surveys as well as remote sensing from satellite, aircrafts
and fixed sites. (Source: JPL/Caltech Megacities team, Hutyra et al., 2014).
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ambitions. Therefore, bespoke solutions seem necessary rather than a one size fits all approach to under-
standing urban CH4.

6. Extending the Impact of CH4 Science: Communication and Cooperation

The advances described above could improve the extent to which CH4 sources and sinks can be quantified,
but additional efforts are needed to maximize impact in order to help reach the Paris Agreement targets.
Although scientists are already contributing to efforts to make data and interpretations available closer to
real time and at spatial resolutions that are more relevant to policy makers, such for as individual cities,
more can be done to make science useful and accessible.

The Global Carbon Project (www.globalcarbonproject.org) integrates knowledge of sources and sinks for
CH4, CO2, and nitrous oxide from natural and anthropogenic sources. As part of its annual or biennial
releases for greenhouse gas budgets (e.g., Saunois et al., 2016) it teams with professional communicators
to help present data as infographics (e.g., www.globalcarbonatlas.org), hone the language and presentation
of updates and take‐home messages, tailor information for specific countries, and make data more useable
and available through its web portals. Similarly, WMO IG3IS attempts to provide stakeholders with emis-
sions information in as timely a fashion as possible. Its priorities include reducing uncertainties in national
emission inventories, supporting the Paris Agreement's global stock take for greenhouse gases, and encoura-
ging the implementation of national top‐down emissions quantification programs.

National‐scale top‐down flux estimation can allow for useful benchmarking of inventories. and is considered
best practice by the IPCC (2019). It is therefore critical that good dialogue and common goal setting occur
between all aspects of the CH4 science discussed here, which includes those measuring CH4, inventory com-
pilers and inverse modelers. One such way for ensuring good dialogue is through common funding sources,
whereby measurements, the national inventory and top‐down estimation, are funded by the same agency,
providing a vital route of communication.

Understanding the roles that emissions, sinks, and the uptake of mitigation/removal technologies play in
altering trends in atmospheric CH4 mole fractions will require enhanced measurement and modeling sys-
tems. The improvements that are described here will play a key role in helping to assess emissions commit-
ments as more cities, states, and countries report CH4 emission inventories and commit to mitigation targets.
Scientists working on implementing these advances should make their data publicly available and should
synthesize their data into forms accessible for use by other researchers. Such best practices will advance pro-
gress in this highly connected field. Where possible, scientists should also engage policy makers and other
stakeholders early and often. Such cooperation will make it more likely that CH4 science makes the world
a better place.
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