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A B S T R A C T

Modeling time-varying operations in complex energy systems optimization problems is often computationally in-
tractable, and time-series input data are thus often aggregated to representative periods. In this work, we introduce a
framework for using clustering methods for this purpose, and we compare both conventionally-used methods (k-
means, k-medoids, and hierarchical clustering), and shape-based clustering methods (dynamic time warping bar-
ycenter averaging and k-shape). We compare these methods in the domain of the objective function of two example
operational optimization problems: battery charge/discharge optimization and gas turbine scheduling, which exhibit
characteristics of complex optimization problems. We show that centroid-based clustering methods represent the
operational part of the optimization problem more predictably than medoid-based approaches but are biased in
objective function estimate. On certain problems that exploit intra-daily variability, such as battery scheduling, we
show that k-shape improves performance significantly over conventionally-used clustering methods. Comparing all
locally-converged solutions of the clustering methods, we show that a better representation in terms of clustering
measure is not necessarily better in terms of objective function value of the optimization problem.

1. Introduction

Computational optimization is a key part of the design and evaluation
process for energy industries. The design of energy supply, generation,
and conversion systems typically involves complex tradeoffs in capital
costs, energy efficiency, system reliability, and system flexibility. These
complexities lend themselves well to optimization approaches wherein
tradeoffs can be modeled with high fidelity and many cases can be ex-
plored. The current state of the art involves applying complex mixed
integer linear or nonlinear programming (MILP or MINLP) models that
include discrete choices about technologies along with realistic re-
presentations of technology physics and chemistry.

Treating time rigorously is a large challenge when optimizing energy
systems. Optimal technology design and operation requires understanding

of impacts over multiple time scales; design decisions last for years or
decades, while operational decisions occur on the order of hours or min-
utes. Importantly, these different time scales are coupled: how a system is
designed often strongly affects the way in which it can be operated in any
given hour. Such couplings between time scales are only becoming more
important as renewable energy integration increases the need for flexible
energy system operation.

In many cases, design-level optimization problems for energy sys-
tems are computationally expensive, highly constrained, and in the case
of nonlinear optimization, subject to multiple locally-optimal solutions.
It is often computationally intractable to analyze such problems for the
full set of temporal input data that the facility might encounter.

For example, electricity prices vary at scales of minutes to hours, but
it is computationally intractable to represent electricity prices with this
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fidelity when optimizing, for example, the design of a battery storage
system. Many energy system optimization inputs have this character-
istic: vehicle charging schedules, industrial facility operations and
power usage, heating and cooling demands, renewable power genera-
tion, or microgrid design and operation. To include short time scales
phenomena in long-term planning, time-series data inputs are often
aggregated to representative periods. Such aggregation can reduce
computational times by 1–2 orders of magnitude. For example, a system
might be optimized for a set of 5 representative days instead of an
entire year of 365 days.

Representative periods can be created using time-series clustering
methods. Time-series clustering is concerned with grouping periods (in
many cases days) into groups that are similar. The clusters are then re-
presented by one representative period each. Multiple clustering methods
have been conventionally used to find representative periods, including: k-
means, k-medoids, and hierarchical clustering (Table 1 shows for a list of
papers in which such methods have previously been applied).

Examples of using these common methods to find representative
periods for energy systems optimization are numerous. These applica-
tions range from capacity expansion planning of power systems with
and without unit commitment [1–8], to the design of local energy
supply systems [9–14], to the design of building energy systems [15], to
the design of combined heat and power plants [16], to the design of
carbon capture facilities [17–20]. Concerning the applications to ca-
pacity expansion planning, Green et al. [1] apply clustering to opera-
tions of the power system of Great Britain, Nahmmacher et al. [2] to the
European power system, Merrick [3] to the Texas power system, Heu-
berger et al. [4] to the United Kingdom power system, Lara et al. [5]

again to the Texas power system, Pfenninger [6] to the power system of
Great Britain, Almaimouni et al. [7] again to the Texas power system,
and Tejada Arango et al. [8] to the Spanish power system. Concerning
the applications to local energy supply systems, Bahl et al. [9–11] and
Baumgaertner et al. [12] provide heat and electricity to an industrial
facility, Kotzur et al. [13] provide heat and electricity to a residential
and an island system, and Gabrielli et al. [14] provide heat and elec-
tricity to neighborhood. Concerning the applications to carbon capture
facilities, Brodrick et al. [17,18,20] apply clustering to integrated solar
combined cycle systems, and Teichgraeber et al. [19] to an oxyfuel
combined cycle. Methods have also been developed to include seasonal
storage [8,14,21], bounding the error in the objective function that was
introduced by clustering [9], and including clustering methods in de-
veloping advanced solution strategies [11,5].

Other methods are popular in general time-series clustering but – to
the best of our knowledge – have not been widely applied to find re-
presentative periods for energy systems optimization [22]. These
methods include dynamic time warping (DTW) barycenter averaging
(DBA) clustering [23] and k-shape [24]. These methods extract shape-
based information, DBA by stretching or contracting the time axis, and
k-shape by maximizing the cross correlation between shifted versions of
the time-series. DTW is widely used in time series classification appli-
cations [25] and in clustering applications [23]. More recently, k-shape
has been proposed and was shown to perform well clustering a wide
range of time series [24].

Some applications exist of shape-based clustering methods related
to energy systems. Teeraratkul et al. [26] apply a clustering method
that uses DTW as the distance measure to cluster residential electricity

Nomenclature

E hourly electric energy inflow
c cluster center
D DTW distance matrix
P matrix of daily price vectors
pi daily price vector
R matrix of representative days
r cluster representative
P matrix of normalized daily price vectors
p daily normalized price vector
R matrix of normalized representative days
r normalized representative day
E hourly electric energy outflow
dist() distance measure

gt combined cycle efficiency
in battery inflow efficiency
out battery outflow efficiency

Ck set of daily indices belonging to cluster k
K set of cluster indices
N set of daily indices
T set of hourly indices

µ mean
standard deviation

b DTW bandwidth
Emax maximum energy capacity
Nk number of days in cluster k
pgas natural gas price
Pmax maximum power capacity
R autocorrelation function
CA California
CC cross correlation
DBA Dynamic Time Warping Barycenter Averaging
DTW Dynamic Time Warping
ED euclidean distance
GER Germany
K number of clusters
LP Linear Program
MILP Mixed Integer Linear Program
MINLP Mixed Integer Nonlinear Program
S battery storage level
SBD shape based distance
SSD sum of squared distances

Table 1
Overview of clustering methods considered in this work and examples of where these methods have been applied previously in the literature.

Algorithm Distance measure dist() Center c Cluster representation r Name Previously applied in

Partitional ED Centroid Centroid k-means [1,5,7,13–15]
[9,10,17–20,28]

Partitional ED Centroid Medoid [4]
Partitional ED Medoid Medoid k-medoids [8,11,21]

[16,15,13]
Partitional DTW Centroid Centroid DBA
Partitional SBD Centroid Centroid k-shape [27]
Agglomerative ED Centroid Centroid Hierarchical - centroid
Agglomerative ED Centroid Medoid Hierarchical - medoid [2,3,13]
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load profiles into similar groups [26], and show that the method out-
performs k-means clustering. Blanco and Morales [27] apply k-shape to
find wind power production scenarios for a stochastic unit commitment
optimization problem.

Three studies compare different clustering methods. Schuetz et al.
[15] evaluate k-means, k-medians, k-centers, and k-medoids clustering
applied to the optimal design of building energy systems. They find that
in the case of small demand variability, all methods perform well in
terms of objective function value, and in the case of large demand
variability, k-medoids captured the variability best in terms of objective
function value of the optimization problem. Pfenninger [6] evaluates a
variety of combinations of clustering methods (k-means, k-medoids,
hierarchical clustering) and extreme value selection methods on a
generation capacity expansion problem. He shows that results can vary
significantly among methods, and points out that results can also vary
significantly among model years, thus pointing to the need to

incorporate several years of input data. Kotzur et al. [13] evaluate k-
means clustering, k-medoids clustering, and hierarchical clustering with
the medoid as the representation and formulate several two-stage op-
timization problems that are concerned with the design of energy
supply systems: a CHP based energy supply system, a residential energy
supply system, and an island electricity supply system. They conclude
that the performance of representative days depends strongly on the
system to be optimized. Further, they conclude that generally no clus-
tering method outperforms all others, but that the medoid as re-
presentation captures variability in the data better than the centroid
because it does not smooth the data as much as the centroid.

The above-mentioned energy systems optimization studies jointly
investigate the representation in the operational and design domain of
these two-stage problems. These problems are complex and include
different characteristics such as storage, load shifting, and power gen-
eration. Little formal comparison has been performed across the suite of
methods so as to understand which methods perform well on which
problem characteristics.

In this work, we aim to remedy this gap by introducing an analysis
framework and performing structured intercomparison of seven time series
clustering methods. We analyze the impact of clustering on the optimiza-
tion results obtained for two operations optimization problems. We analyze
only the operational optimization of systems and do not consider design
decisions in order to decompose its effects. We compare traditionally-used
clustering methods, as well as the shape-based methods that have not been
widely applied. We formulate two operational optimization problems that
are simple enough to be solvable deterministically for a full year of elec-
tricity price time series data. By applying various implementations of
clustering, we can then directly compute the objective function error re-
sulting from clustering. We then compare the clustering methods in the
domain of the objective function of these optimization problems.

The aims of this paper are to: (1) develop a framework in which
clustering methods for finding representative periods can be described,
(2) analyze the operational representation of different clustering
methods, especially centroid- vs. medoid- based clustering, (3) in-
vestigate the usefulness of shape-based clustering methods, and (4)
investigate how well the clustering method maps into the objective
function space of the optimization problem by investigating the per-
formance of different clustering methods.

This paper proceeds as follows. In Section 2, we introduce a fra-
mework for clustering methods to find representative periods. In Sec-
tions 3–5, we introduce the clustering methods that are compared in
this paper, the optimization problem formulations that they are applied
to, and the data, respectively. In Section 6, we present and analyze the
results, and we conclude in Section 7.

Fig. 1. Framework of clustering methods for finding representative periods for
the optimization of energy systems. # stands for an attribute that is to be
clustered (e.g. electricity price).

Fig. 2. Illustration of the normalization scopes: full normalization, element-based normalization, sequence-based normalization.
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2. Clustering framework

Generally, the clustering problem aims to find representative periods
and associated weights that represent the full time series in the optimi-
zation problem. The ideal clustering method would represent all of the
information in the full dataset with a small fraction of the input data.
However, all real clustering application suffer from some error due to
data reduction. This error can be persistent in direction (bias) or random
(noise). Importantly, in optimization we care about error introduced into
the optimization objective function and decision variables, not the un-
derlying clustering error. These two types of error are related but not
equivalent: the best-fitting cluster assignment may not result in the most
accurate objective function value (see Section 6.3 for additional details).

Clustering involves multiple steps, some of which are conflated or
not made explicit in the prior literature. Fig. 1 illustrates our framework
for time-series clustering methods. In this framework, there are three
general steps: (1) normalization, (2) assignment, and (3) representa-
tion. All time series clustering methods applied to energy systems op-
timization problems to date can be classified by their methodological
choices in these steps. The aim of this framework is for future work to
describe clustering methods on a common basis and improve compar-
ability amongst papers. Table 1 classifies the clustering methods used in
the literature within our framework.

The first step in the framework is normalization of the data.
Normalization is commonly used and necessary when using multiple
input data sets (often called attributes) with different units because
magnitudes of attributes can differ greatly. Normalization methods vary
with the operation applied (e.g., division by largest value) and the
scope of normalization (e.g., day-wise). Normalization operations in-
clude: (1) no normalization; (2) normalizing observations by the largest
value (0–1 normalization); or (3) normalizing to mean zero and stan-
dard deviation 1 ( =µ 0 and = 1, also known as z-normalization).

Normalization scope can also differ. Fig. 2 illustrates different nor-
malization scopes in the case of a year of hourly data (here shown
normalized with z-normalization for simplicity). For the full normal-
ization scope (left), the time series as a whole is in the scope, so that the
entire year of data is normalized using a single µ and . For the ele-
ment-based normalization scope (center), each time step can be nor-
malized individually by computing the µ and for each data element
(hour) across all observations (days). This will result in 24 values for µ
and . For the sequence-based normalization scope (right), each ob-
servation (day) can be normalized independently, resulting in 365 va-
lues of µ and .

After normalization, the assignment step assigns similar periods to
clusters. Assignment can be performed using a variety of clustering
methods. Clustering methods differ in three ways. First, each clustering
method requires a distance measure to represent goodness of fit of an
observation to a cluster (e.g., Euclidean distance). Second, clustering
methods use an algorithm to assign observations to clusters (e.g., par-
titional or hierarchical). Lastly, they vary in the cluster center used in
the calculation (e.g., centroid or medoid).

The third step in the framework is representation. Each cluster must
be represented by an observation and an associated weight, allowing for
the desired data reduction. In existing methods, both the cluster cen-
troid and cluster medoid have been used to represent the cluster in the
optimization problem. Finally, the representative period must be ex-
pressed in the units of the original data, thus the initial normalization
must be undone by denormalization.

Note that the assignment and representation steps are often viewed
as connected, though in general they need not be. For example, the
cluster center c used in the algorithm is often, but not always, chosen as
the cluster representative r . For example, the k-means clustering algo-
rithm uses the cluster centroid as its center, and a natural choice is to
represent the cluster with the resulting centroid. However, there are
also approaches that use k-means clustering, and then choose the me-
doid of each resulting cluster as the cluster representative [4].

3. Clustering methods

In this section, we introduce the clustering methods that are com-
pared in this paper for the purpose of finding representative periods,
which we from here on refer to as representative days.

We aggregate a time-series consisting of N daily price vectors
…p p, , N1 (each is a day of T hourly prices) into K clusters. We introduce

the following sets for notation:N = … N{1, , } is the set of daily indices,
T = … T{1, , } is the set of hourly time-step indices within each day,
K = … K{1, , } is the set of cluster indices, and Ck with Kk are the
disjoint sets of daily indices belonging to the respective clusters k. It
holds that C NK =k k .

We first introduce the different normalization methods. We then
describe the clustering methods by their assignment step (distance
measure dist(), clustering algorithm, center c). In our comparison, we
consider partitional clustering methods (k-means, k-medoids, DBA
clustering, k-shape), and hierarchical clustering methods (agglom-
erative hierarchical clustering using Ward’s algorithm). An overview of
the methods considered in this work is shown in Table 1.

3.1. Normalization

We use the z-normalization in all cases below. Z-normalization is
commonly applied in statistics before clustering algorithms are applied
[29]. It shifts the mean to zero and the standard deviation to one. The
three normalization scopes (full normalization, element-based normal-
ization, sequence-based normalization) considered are shown in Fig. 2.
All clustering methods are used with z-normalization on all normal-
ization scopes (except for k-shape, which only works with sequence-
based normalization). Normalization transforms each daily price vector

×p P P,i
N T , to the normalized daily price vector

×p P P,i
N T .

Z-normalization is applied as follows:

=P P µ1
(1)

where µ is the mean and is the standard deviation. Using the full
normalization scope, µ and are scalars. For element-based normal-
ization scope, they are vectors µ ,elem elem

T , while for sequence-
based normalization scopes they are vectors µ ,seq seq

N (please refer
to SI for implementation details). After applying clustering, we obtain K
normalized cluster representations ×r R R,k

K T . We obtain the
denormalized cluster representations ×r R R,k

K T by

= +R R µ (2)

For time-series clustering using shape-based methods such as DBA
clustering and k-shape, sequence-based normalization is commonly
used [30]. However, these methods are generally used in contexts
where only the assignment matters in the analysis. Our methods require
the use of the denormalized representation. Because we obtain a mean
and standard deviation for each day, but only obtain K representations,
we cannot utilize the means and standard deviations directly. We thus
introduce denormalization for sequence-based clustering based on
averaged means and standard deviations of elements of the cluster:

= +R R µ1diag( )seq seq
T

(3)

where C
=µ µseq K i seq i

1
,k
and C

=seq K i seq i
1

,k
.

3.2. Distance measures

Distance measures (signified dist) are used to compute the dissim-
ilarity between two time-series vectors x y, T . In this work, we
consider three distance measures: Euclidean distance x yED( , ), dy-
namic time warping x yDTW( , ), and shape based distance x ySBD( , ).

Euclidean distance computes the distance between two time-series
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vectors (in our case days) based on the l2-norm

T
= =x y x y x ydist , ED , ( )

t t t
2

(4)

It compares each hour t of one day with the respective hour t of the
other day (see Fig. 3).

Dynamic time warping (DTW) [31] takes into consideration that the
shape of two time-series vectors can be similar but shifted. It can be
seen as an extension of the Euclidean distance, where it compares any
hour of one day to any hour of the other day, instead of only the same
hours. This is illustrated in Fig. 3, where hours with similar prices are
aligned.

One can imagine a multitude of possible alignments between two
time-series vectors. The optimal alignment is calculated as follows and
illustrated in Fig. 4. The squared distances of all hours of x to all hours
of y are stored in a matrix ×D T T , where every entry Dij of the
matrix is the squared error between xi and yj (illustrated by the color in
Fig. 4. Any path through the matrix starting at D1,1 and ending at DT T,
describes an alignment of the two time series. This path is called the
warping path and can formally be described as = …W w w{ }L1 of ele-
ments = …w W w D l L L T, , {1, , },l l ij through the matrix D
starting at D1,1 and ending at DN N, such that i j, , or both i and j increase
for each step l of the pathW. The cost of a particular warping path is the
square root of sum of its entries = wl

L
l1 , and the DTW distance is the

path of minimum cost amongst all possible paths:

= =
=

x y x y wdist , DTW , min ( )
W l

L
l1 (5)

Finding the path of minimum cost through the matrix is done recur-
sively.

Furthermore, the warping path can be constrained to remain within
a so-called “warping window,” where only a subset of the matrix D with
bandwidth b is evaluated, i. e., elements of the warping path =w Dl ij
are constrained by i j b, to find the path between the time-series
vectors [31]. This reduces computational time significantly and has
been shown to improve clustering performance [25]. Note that the
Euclidean distance is a special case of dynamic time warping, where the
warping window =b 0, and therefore the cost path is the diagonal
through the matrix D.

DTW is the major distance measure used in classification tasks of
time-series data and has been shown to do well in clustering tasks [25].

The shape based distance (SBD) has recently been proposed by
Paparrizos and Gravano [24]. It compares the shape of two time-series
vectors by sliding one of them against the other as illustrated in Fig. 3.
One can measure the distance between two slided time series in terms
of cross correlation, which is calculated through the inner product be-
tween two time series. If no sliding occurs, cross correlation is the inner
product x y· , and if sliding occurs, cross correlation is the inner product
between the two portions of the vectors that overlap. Higher similarities
in shape lead to higher cross correlation. Thus, SBD is the maximum
cross correlation 1 that occurs among all possibilities of sliding the two
vectors amongst each other.

3.3. Partitional clustering algorithms

All methods based on partitional clustering algorithms compared in
this work minimize the within-cluster sum of squared distances (SSD)

between the cluster members and the cluster center c:

C C C C

K C

… = … p cargmin dist( , )K
k i

i k1
2

K
k

1
(6)

These methods differ in their choice of distance measure dist and cluster
center c, but they can be solved using a similar general algorithm. The
partitional clustering algorithm is a generalization of Lloyd’s algorithm
[32] and the k-means algorithm [33,34]. To begin, the cluster centers
are initialized randomly. Then, the algorithm iteratively performs the
following two steps until it converges (i. e., there are no changes in
cluster assignments) or reaches a maximum number of iterations: In the
first step (assignment), each daily price vector pi is assigned to the
closest cluster center c based on the distance measure dist (Eq. (7) with
fixed ck), and in the second step (refinement), the cluster centers c are
updated in order to reflect the changes in cluster assignments. Each
center is updated to the z that minimizes the within-cluster distance:

C

=c p zargmin dist( , )zk
i

i
2

k (7)

Cluster centers can be based on the centroid or medoid. The centroid is
any artificial vector z T , whereas the medoid is an actual vector

…z p p{ , , }N1 .
The algorithm finds the cluster assignments Ck. Unless noted

otherwise, we initialize the algorithms below with k-means++ [35].
The algorithm yields locally converged solutions based on the random
cluster initializations. In this work, we run all clustering algorithms
until convergence by testing 10,000 local starting points and do not
consider any non-converged solutions unless noted otherwise.

3.3.1. k-means clustering
k-means clustering [33,34] minimizes the Euclidean distance

Fig. 3. Visualization of the distance measures Euclidean distance (ED), dynamic
time warping (DTW), and shape based distance (SBD). Electricity price shapes
from Germany, January 23, 2015 (blue-solid) and January 24, 2015 (red-da-
shed). ED aligns each hour of one day with the respective hour of the other day,
whereas DTW is able to align any hour of one day to any hour of another day
within a certain bandwidth b (here, =b 2). Both use an l2-norm minimization
based measure. SBD finds similarities in shape by sliding one day (blue-solid)
compared to the other. It uses a cross-correlation maximization based measure.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

1 Because SBD as a distance measure by definition measures dissimilarity,
SBD is formally defined as the negative of the cross correlation

= =x y x yCC: dist , SBD , 1 max x y
x x y ys

CCs
R R

( , )
0 ( , ) 0 ( , )

, which finds the sliding

between the two vectors that maximizes cross correlation CC. R is the auto-
correlation function and the denominator ensures proper normalization. For a
more detailed description of SBD, see Paparrizos and Gravano [24].
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( =p z p zdist( , ) ED( , )i i ). k-means clustering uses the centroid as cluster
center, which can be computed with the arithmetic mean. It is com-
monly used with the centroid as the representation, but has also been
used with the medoid as the representation in the context of energy
systems optimization. In this work, we consider both representations.
Fig. 5 shows exemplary centroid representations and the underlying
data from k-means clustering.

3.3.2. k-medoids clustering
Similarly to k-means clustering, k-medoids clustering uses the

Euclidean distance as distance measure ( =p z p zdist( , ) ED( , )i i ).
However, the cluster center is its medoid.

Besides being solved with the partitional clustering algorithm out-
lined initially, the k-medoids clustering problem can be formulated as a
Binary Integer Program (BIP) as introduced by [36] and used by [16].
Please refer to SI for the full formulation. The BIP formulation is gen-
erally NP-hard, but it can be solved to near global optimality for the
number of days considered in this study (optimality gap 0.01%). In
this work, we use both the partitional clustering algorithm and the BIP
formulation.

3.3.3. DBA clustering
Dynamic time warping barycenter averaging (DBA) clustering [23]

takes into consideration that the shape of two time series can be similar
stretched and contracted. It is a centroid-based partitional clustering
algorithm that uses Dynamic Time Warping (DTW) [31] as its distance
measure ( =p z p zdist( , ) DTW( , )i i ). This means that the iterative pro-
cedure is similar to the one of the k-means clustering method, but in-
stead of Euclidean distance, the DTW distance is used to assign different
days to given cluster centers, and the cluster centers are updated using
barycenter averaging instead of arithmetic mean.

The DBA cluster update of centroid ck using barycenter averaging
was introduced by Petitjean et al. [23] and to date is the most efficient
and accurate way to find a centroid for the DTW distance measure [24].
It is an iterative process and works as follows: First, the DTW distances
between all time-series in cluster k and the current centroid ck are
calculated, and the DTW paths are saved. Then, each element cki is
updated as the arithmetic mean of all elements in the time series in
cluster k that are connected to element cki. This is repeated until con-
vergence. For more details on the implementation of the algorithm, see
Petitjean et al. [23].

3.3.4. k-shape clustering
k-shape clustering has recently been proposed as an alternative to

DTW as a shape-based clustering method [24]. It is a centroid-based

partitional clustering method and uses the shape-based distance
( =p z p zdist( , ) SBD( , )i i ). In the iterative procedure of partitional clus-
tering, SBD is used to assign different days to given cluster centers, and
the centers are updated according to the center definition in Eq. (7),
where z T . Paparrizos and Gravano rewrite the optimization problem
stated in Eq. (7) with =p z p zdist( , ) SBD( , )i i such that it is in the form of
the maximization of the Raleigh Quotient, which can be solved analyti-
cally. This makes the center update computationally efficient.

3.4. Hierarchical clustering algorithm

We consider the most common type of hierarchical clustering: ag-
glomerative hierarchical clustering. We start with =k N clusters and
proceed by merging the two closest observations into one cluster, ob-
taining =k N 1 clusters. The process of merging two clusters to ob-
tain k 1 clusters is repeated until we reach the desired number of
clusters K. This produces a hierarchy of cluster assignments, where each
level of the hierarchy (k clusters) is created by merging clusters from
the next lower hierarchy ( +k 1 clusters) [37]. Which clusters to merge
is decided by minimizing the total within-cluster variance. This is done
using Ward’s algorithm [38]. In each step, the centroid of each cluster k
is calculated according to Eq. (7). Then, for all combinations of clusters
i and j, the Euclidean distance c cED( , )i j is calculated and the two
clusters i and j that yield the minimum Euclidean distance are merged.
After the assignments for the chosen number of clusters is obtained, we
need to find a representation. In this work, we compare the centroid
and the medoid as cluster representations.

Note that choosing the medoid as cluster representation does not
mean that this algorithm is a greedy version of the above introduced k-
medoids algorithm. The k-medoid algorithm uses medoids as cluster
centers for the minimization of the Euclidean distance. In contrast, the
hierarchical clustering algorithm uses centroids as cluster centers for
the minimization of the Euclidean distance, and chooses the medoid
only as a cluster representation.

Hierarchical clustering is deterministic, which means it is re-
producible. However, it is also greedy, which means that it yields local
solutions with sets of cluster assignmentsC C… K1 that do not necessarily
satisfy optimality in Eq. (6).

3.5. Representation

Each cluster is represented in the optimization problem by a re-
presentative period and an associated weight. The representative period
is often, but not always the same as the choice of cluster center in the
assignment step. For representative periods based on the medoid, the
weighted mean of the representative periods …r rk1 may be different
than the mean of the full time series …p pN1 . Thus, we rescale the me-
doid-based representations by a scaling factor s as introduced in [2,13]:

C
N T

K T

=s
p

r
n t n t

k t k k t

,

, (8)

4. Optimization problems

In order to test the impacts of the above clustering choices, we
generate simple operational problems formulated as linear programs
that can be solved directly for 365 days of hourly data. The aim of these
simple operational optimization problems is not necessarily to model
the technologies to the last level of detail, but rather (a) to represent
characteristics relevant to the comparison of clustering methods for the
problem’s input data, and (b) to allow for interpretability of results. The
solution of the problem with 365 days gives us the true value of the
objective function without error introduced by clustered input data,
against which the value of the objective function with clustered input
data can be compared. We create two optimization problems: (1) an

Fig. 4. Dynamic time warping with bandwidth =b 2 distance matrix visuali-
zation. Two exemplary price profiles are shown, and the corresponding distance
matrix D in color. The path of minimum cost through the matrix aligns the two
time-series. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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electricity storage problem for optimal energy price arbitrage; (2) a gas
turbine power generation problem for optimal power dispatch.

The electricity storage problem is formulated as follows:

K T

K T

K T

K T

K

K T

= +

= =
+

+

N E E p

E P t k t
E P t k t
S E k t

S S E k t

S S S S k

max

s. t.
0 ,
0 ,
0 ,

,

E E S k
k

t
k t k t k t

k t max

k t max

k t max

k t k t in k t
E

k k T k

, ,
, , ,

,

,

,

, 1 , ,

,1 , 1 1,1 ,1

k t

out
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(9)

Here, Ek t, and Ek t, is hourly electric energy that flows out or into the
battery from the market — they can also be seen as average power —,
pk t, is the hourly electricity price, and C=Nk k is the number of days in
cluster k. Pmax is the maximum power, and Emax is the maximum storage
capacity of the battery. Skt is the amount of energy stored in the battery,
and in and out are the charge and discharge efficiencies. Here we as-
sume maximum power of 100MW and maximum storage capacity of
400MWh,2 with charge and discharge efficiencies at 95%. Note that
when we solve this problem for the full representation, we solve with

= =k N 365 days. This assumes that the storage level at the beginning
of each day is the same, i.e. no-inter day storage. Thus, this modeling
approach does not consider shifting energy from one day to another and
should be enhanced for application cases where inter-day storage is
important to consider, e.g. when the battery is used to store energy for
multiple days, weeks, or for a whole season. Inter-day storage methods
have been developed by Kotzur et al. [21] and Gabrielli et al. [40].
Because the purpose of the battery model in this work is to analyze the
effect of clustering alone, we do not consider inter-day storage.

The gas turbine dispatch problem is formulated as follows:
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E P t k t
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k t max
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,
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,

(10)

Here, Ek t, is the hourly electric energy generated from the gas turbine,
and pgas is the gas price. We assume a gas price of 4 $/GJ for California
and 6.8 $/GJ for Germany. We assume a constant natural gas price be-
cause natural gas is usually procured on a time scale of months to years,
whereas this paper is concerned with hourly variations in electricity
prices over a day. We assume a combined cycle efficiency gt of 60%. We
assume that the combined cycle can fully ramp up or down below one
hour and thus do not include ramping constraints [41]. We also do not
consider minimum power production constraints. We make these as-
sumptions because the aim of this work is to make the models as simple
as possible to allow for interpretability that is not possible in more
complex optimization problem formulations. Using a single-cycle gas
turbine with 40% efficiency does not change the findings qualitatively.

5. Data

The above-described clustering methods are evaluated using two
electricity price data sets from 2015. Both are hourly data from the day-
ahead market, one from a price node in Northern California and the
other from the German country-wide price. The mean price is 30.4 $/
MWh in California and 31.6 EUR/MWh in Germany, and the standard
deviation is 13.0 $/MWh in California and 12.7 EUR/MWh in Germany.
A visual example of the data can be found in [19] and a visual example
of cluster outcomes on the data is shown in Fig. 5. We provide the data
and code used in this paper in a publicly available github repository3.

6. Results

We calculate the resulting objective function value of the respective
optimization problem for the full representation (N=365 days of
electricity prices) and for each clustering option. We then compare the
results in objective function value between the full representation and
the clustered representation.

6.1. Clustering cases explored

The clustering cases we explore include all of the methods outlined
in Table 1. For each case we perform clustering for = …k 1 9 re-
presentative days. The results shown in this range show all the in-
dicative characteristics of optimization results with higher number of

Fig. 5. k-means on Germany data (k=5): (a) example cluster representations and respective weights, and (b) the respective assignments of the original data. The
weights signify how many out of the 365 days are represented by the respective cluster.

2 This corresponds to the maximum power and storage capacity of a recently
licensed storage project by AES Energy Storage and Siemens in Southern
California [39]. 3 https://github.com/holgerteichgraeber/ClustForOpt.jl
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clusters k. We ensure in each case that the solutions obtained for a
particular k are close to the global optimum in clustering distance
measure by re-starting each clustering operation with 10,000 randomly
initialized cluster assignments and taking the clustering result with the
lowest locally converged distance measure of all of these trials. Because
the clustering operations minimize distance measure, the lowest locally
converged distance measure is the best distance in terms of clustering
measure.

6.2. Clustering method comparison

Fig. 6 shows the objective function value for a given k (k N ) and
clustering method, normalized by the objective function value for the
full representation. This is performed for both the battery problem and
the gas turbine problem using electricity price data from both Germany
(GER) and California (CA). Centroid-based (first row), medoid-based
(second row), and shape-based clustering methods (third row) are
compared in the figure.

The figure presents the methods using the normalization scope that
they are conventionally used with: The methods using centroid and
medoid as representation use full normalization scope, and the shape-
based methods use sequence-based normalization scope. The results
comparing all clustering methods on all normalization scopes are pre-
sented in SI.

Fig. 6 allows several observations, taking as an example the battery
optimization problem and Germany electricity price data (column 1).
First, centroid-based methods (top row) perform similarly: they in-
crease in objective function value with increasing k, and one single
cluster captures approximately 75% of the objective function value of
the full representation. The objective function value of both k-means
clustering and hierarchical clustering with the centroid always under-
estimate the objective function value of the full representation. This can
be explained by Theorem 1. The proofs for Theorems 1–3 can be found
in SI.

Theorem 1. For an LP, if data is clustered in the objective function
coefficient vector c, the constraints are structurally the same for all periods,

and the cluster representation is centroid based, then the optimization
problem with full input data is a relaxation of the optimization problem with
clustered input data.

Similarly, the following holds for linear programs with data clus-
tered in the constraint coefficient vector (such as heating or cooling
demand).

Theorem 2. For an LP, if data is clustered in the constraint coefficient
vector b, the corresponding constraints are structurally the same, and the
cluster representation is centroid based, then the optimization problem with
clustered input data is a relaxation of the optimization problem with full
input data.

In Fig. 6, we further observe that hierarchical clustering with the
centroid as its representation increases monotonically in objective
function value with an increasing number of clusters. This also is a
general property.

Theorem 3. For an LP, if data is clustered in the objective function
coefficient vector c or in the constraint coefficient vector b with structurally
similar constraints for all periods, and if the cluster representation is centroid
based and the clustering algorithm is hierarchical clustering using Ward’s
algorithm, then the objective function value zk is a monotonic function of the
number of clusters k.

k-medoids and hierarchical clustering with the medoid as its re-
presentation perform less predictably. As k increases, the objective
function either increases toward or decreases away from the full re-
presentation, with no clear pattern emerging. If the full representation
is unknown, choosing an appropriate k in a specific case study is
challenging. k-means clustering with the medoid as representation
performs even less predictably, showing inconsistent operational re-
presentation as the number of clusters increases.

The error due to data reduction that we observe with centroid-based
and medoid-based methods can be persistent in direction (bias) or
random (noise). Overall, we observe that centroid-based methods have
low noise, but underestimate the objective function value of the full
representation (bias). On the other hand, we also observe bias but

Fig. 6. Objective value (revenue) as a function of the number of clusters for the different clustering methods. The methods using centroid and medoid as re-
presentation use the full normalization scope, and the shape-based methods use the sequence-based normalization scope.
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additionally noise for medoid-based methods. We also observe that bias
and noise are not only method dependent, but also depend on the data:
k-means with the medoid as its representation results in low bias but
high noise on problems with Germany data (Figs. 6e and g), but lower
noise and higher bias on problems with California data (Figs. 6f and h).

k-shape performs well on the battery optimization problem, re-
presenting the full representation very well with only two re-
presentative days. Because the objective function value of the battery
optimization problem depends on the arbitrage potential between
hours, the characteristics of this problem are based on the difference of
the electricity price between hours and does not depend on the overall
level of the price itself. These are characteristics that the k-shape
method prioritizes when forming clusters and thus it performs well.
DBA clustering does not perform as well and does not show significant
differences when used with different bandwidths. Even though DBA
clustering is also shape based, this performance may be because DTW
can assign hours in ways that distort physical meaning.

The DTW alignment of two example days in Fig. 3 shows that the
time series is stretched and contracted, whereas k-shape shifts time
series relative to each other. Shifting may better retain the information
relevant to storage optimization problems than stretching and con-
tracting. Note that DBA clustering with a bandwidth of zero is
equivalent to k-means clustering with sequence-based normalization.

The battery optimization problem evaluated on the California data
yields results similar to those of the Germany data for all clustering
methods.

On the gas turbine optimization problem for the Germany data,
clustering methods do not in general yield good objective function
values, but they improve as the number of clusters increases. For the
medoid-based methods the gas turbine problem exhibits behavior si-
milar to the behavior in the battery problem, performing much less
predictably. This is significant because in problems evaluating design
and operations jointly, medoid based approaches have been suggested
to capture more variability in the data. However, we show that this
comes at the trade-off of less predictable representation of the opera-
tional domain.

Shape-based methods do not perform well on the gas turbine pro-
blem with Germany electricity price data because they extract char-
acteristics from the data not relevant to that problem. However, all
methods perform well on the gas turbine problem with California data.
This is because the natural gas price in California is lower than in
Germany, and the turbine is profitably generating power for most of the
time. This shows that even on the same optimization problem, different
input data can yield significantly different results and stresses the need
to evaluate methods on different data sets.

An analysis of the impact of different normalization scopes on the
optimization results can be found in SI. We find that the conventionally
used clustering methods perform best with full normalization or hourly
normalization, whereas shape-based clustering methods perform best
when used with a sequence-based normalization scope. Note that using
a sequence-based normalization scope requires denormalization as in-
troduced in Eq. (3). Also note that we tested but do not show fuzzy c-
means [42], but the method does not perform well. Due to fuzzy cluster
assignments, the clusters are averaged even more strongly and do not
exhibit much price variability, which is important to capture for the
problems at hand.

The comparison of clustering methods in this paper was carried out
on two operational optimization problems with the electricity price as
the clustered attribute. Other optimization problems that clustering has
previously been applied to in the literature are capacity expansion
models or local energy supply systems. These systems consist of mul-
tiple attributes to be clustered, e.g. wind availability, solar availability,
and electricity demand. The framework presented in this paper is ap-
plicable to these problems as well. The results shown in this section
show the following general trends that are also applicable to these
problems. A better representation in terms of clustering measure is not

necessarily better in terms of the objective function of the optimization
problem. k-shape performs well on optimization problems that value
differences between hours instead of absolute attribute values.
Conventionally used clustering methods perform best with full nor-
malization or hourly normalization, and shape-based clustering
methods perform best with a sequence-based normalization scope.

The time complexity of the optimization problems with clustered
input data is mainly a function of the number of clusters. The com-
plexity of the optimization problem increases with the number of
clusters, but is the same for different clustering methods with the same
number of clusters. Kotzur et al. [13] show this empirically on a com-
bined design and operations optimization problem: They show solving
durations for different clustering methods and different numbers of
clusters. The solving duration increases as the number of clusters in-
creaeses, but does not vary significantly for different clustering methods
with the same number of clusters. Table 2 shows the solving time for
clusters obtained through k-means clustering on the different optimi-
zation problems studied in this paper. The solving times for using
clusters obtained from the other clustering methods described in this
paper are not shown, but similar. The results were obtained on an Intel-
Xeon CPU with 2.3 GHz and 512 GB RAM. Because our optimization
problems are operational, they do not include constraints that link
different days together. Thus, the optimization of individual days is
separable and the time complexity of our optimization problems is
O k( ). Note that the time complexity of optimization problems that in-
clude both design and operations optimization grows significantly
faster and is the reason why we use clustering on these problems.

6.3. Local convergence of k-means and k-medoids

Fig. 7 shows the local convergence of 10,000 initial points for each k
for the k-means (a) and k-medoids (b) methods for the battery problem
using Germany data, using full normalization. Fig. 7a allows for a more
detailed analysis of Fig. 6a, and Fig. 7b allows for a more detailed
analysis of Fig. 6e. In Fig. 7b, hierarchical with centroid representation
and best k-means in terms of SSD correspond to Fig. 6a, and in Fig. 7b,
hierarchical with medoid representation and k-medoids exact corre-
spond to Fig. 6e. The results shown here look qualitatively similar for
both optimization problems (battery and turbine) and for both datasets
(CA and GER). On the x-axis, each colored dot is plotted at the value of
minimum clustering measure (SSD) obtained after convergence at each
initial guess. The y-axis coordinate is the resulting objective function
value after running the clusters through the optimization problem.

In the upper right, the star shape at 0 clustering error and 1.0 re-
lative objective function value indicates the full representation (i.e.,

=k 365, or no clustering). Improved clustering methods should aim to
get as close to this point with the smallest value of k. The best solution
in clustering error measure (most rightward) for each value of k is

Table 2
Solving time of k-means clustering for different applications and number of
clusters k in ms. Results averaged over 1000 runs. Standard deviations are re-
ported in SI.

k Battery Gas turbine

GER CA GER CA

1 1.40 1.18 0.41 0.57
2 2.23 2.12 0.68 0.72
3 2.98 3.10 0.96 1.03
4 3.68 4.16 1.14 1.39
5 4.58 4.78 1.41 1.53
6 5.78 5.54 1.76 1.74
7 6.27 6.32 2.26 2.14
8 7.04 7.28 2.34 2.46
9 7.99 8.07 2.52 2.72
365 317.85 303.14 95.62 102.70
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boxed. The 10,000 locally converged solutions for k-medoids are gen-
erated by a partitional clustering algorithm. We see that for this large
number of initial points, the best solution in terms of the clustering
measure of this algorithm is the same as the solution to the exact k-
medoids formulation.

Both the k-means and k-medoids exhibit movement to the right as k
increases. That is, clustering error is reduced with increased k.
However, the methods exhibit quite disparate performance in re-
creating the full representation objective function value. k-means so-
lutions reliably increase to the upper right, and in general a reduction in
clustering measure error is associated with a more accurate objective
value. However, for k-medoids, there is high variance and weak cor-
respondence between clustering measure and objective value. All va-
lues of k 2 contain assignments with objective value near 1 as well
assignments with objective value near 0.7, with little difference in
clustering measure between them. That is, one is not guaranteed that
the k-medioids solution with minimum clustering error will perform
any better in optimization than another randomly chosen k-medoids
solution for the same k. This explains why the objective functions re-
sulting from medoid-based clustering methods perform less predictably
than the centroid-based methods. A similar observation can be made for
the hierarchical clustering with representation as a centroid or medoid
(note as well that we observe that hierarchical clustering does not sa-
tisfy optimality in terms of clustering measure as described in Section
3.4).

When we compare the locally converged solutions of k-means
(Fig. 7a) and k-medoids (Fig. 7b), we observe that the k-means solutions
span a lower range in terms of objective function value than the k-
medoids solutions. Furthermore, we observe that the k-means objective
function values are always below the objective function value (as
shown in Proof 1), whereas this is not guaranteed for the objective
function based on k-medoids clustering.

This large spread in locally converged solutions is especially sig-
nificant for the k-medoids clustering, where the objective function va-
lues span a significant range: the objective function values of all locally
converged solutions do not generally increase with increasing number
of clusters, and no clear pattern emerges as to what the best solution of
the k-medoids method represents in terms of objective function value.

The findings in this subsection stress the importance of evaluating
clustering performance in the domain of the objective function, and not
in terms of statistical clustering error (SSD).

7. Conclusion

It is often computationally intractable to solve design and opera-
tions optimization problems of energy systems for a full set of time
series input data. In this work, we presented a framework for clustering
methods for finding representative periods for these optimization pro-
blems that classifies aggregation methods by normalization method,
clustering method, and cluster representation. By describing the choices
for each of the parts of the framework, future studies that employ
clustering will enhance understanding and evaluation of modeling re-
sults. We furthermore presented a comparison of conventionally used
and shape-based clustering algorithms, and how they affect the op-
erational representation in terms of the objective function value of the
full representation.

Our analysis shows that centroid-based clustering methods re-
present the operational part of the optimization problem more pre-
dictably than medoid-based approaches. They can also be shown to
reliably underestimate objective value. Whereas it has previously been
suggested that medoid based approaches capture variability important
to the design part of complex optimization problems, this comes at the
trade-off of less predictable representation of the operational domain.

Comparing different normalization scopes, we found that the con-
ventionally used clustering methods perform best with full normal-
ization or hourly normalization, whereas shape-based clustering
methods perform best when used with a sequence-based normalization
scope. On certain problems that exploit intra-daily variability, such as
battery problems, we showed that k-shape improves performance sig-
nificantly over conventionally used clustering methods.

Comparing all locally converged solutions of the clustering
methods, we showed that a better representation in terms of clustering
measure is not necessarily better in terms of objective function value of
the optimization problem. This underscores that clustering performance
should be evaluated in the domain of the objective function value of the
optimization problem instead of evaluating the clustering error itself.

This paper provides an initial framework for clustering methods and
a comparison on two operational optimization problems. Future re-
search will include the investigation of extreme period selection and its
addition to the framework. While representative periods obtained so-
lely from clustering are often smooth, extreme periods can add varia-
bility that is contained in the original time series and ensure feasibility
of the system design that is obtained from a clustered solution.
Furthermore, it would be interesting to compare the clustering methods

Fig. 7. Revenue vs. clustering measure (SSD) for the battery optimization problem on Germany data of (a) the centroid-based and (b) the medoid-based clustering
methods. 10,000 initial points for (a) k-means and (b) k-medoids for each number of representative days kWe observe the difference in variance in objective function
value between centroid- and medoid-based representations. Concerning the relationship of this Figure and Fig. 6: (a) hierarchical with centroid representation and
best k-means in terms of SSD correspond to Fig. 6a, and (b) hierarchical with medoid representation and k-medoids exact correspond to Fig. 6e.
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on multiple additional design and operations problems that use several
attributes as input data, for example generation capacity expansion
problems and residential energy supply systems.
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