### **NET Power**

Truly Clean, Cheaper Energy

#### **Presentation to NGI at Stanford**



October 2016

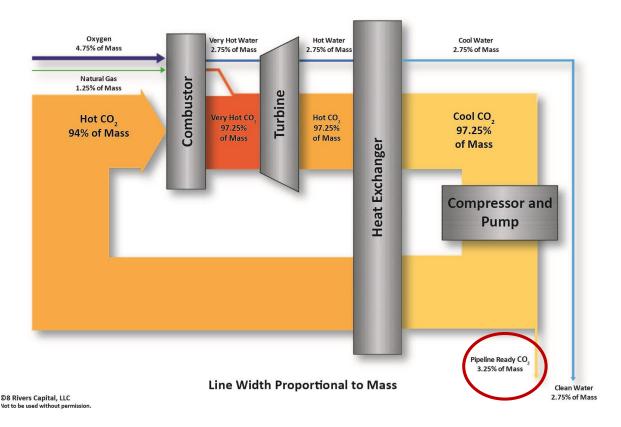




#### **NET Power's first plant is under construction**

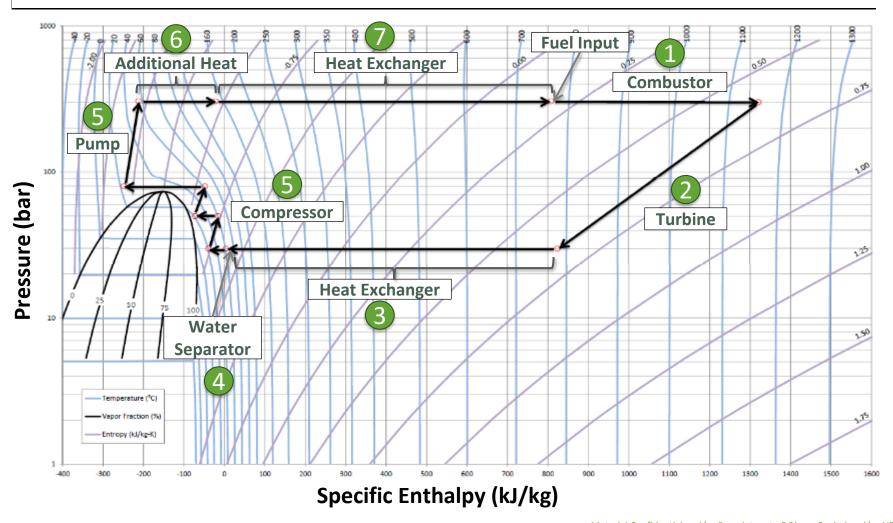
#### 50 MWth Plant in LaPorte, TX, on track for commissioning later this year





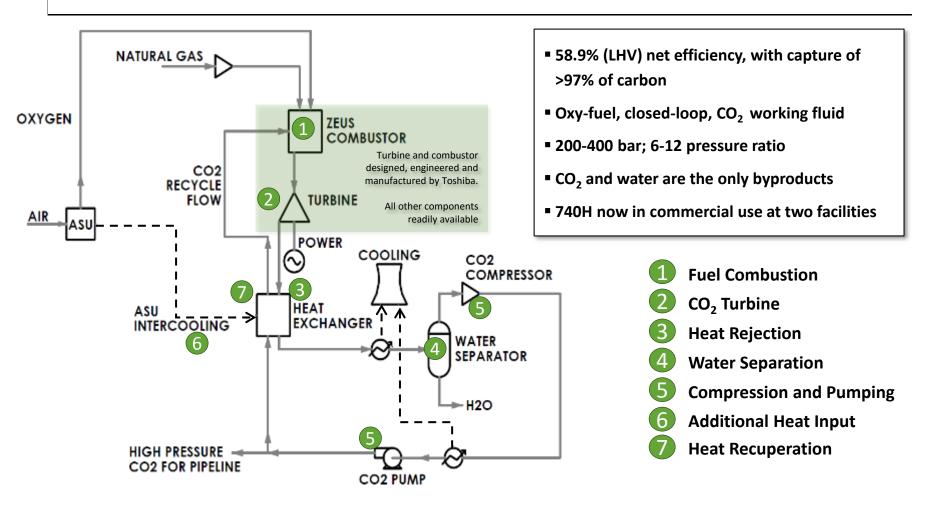

## Technology at a Glance




## The supercritical CO<sub>2</sub> Allam Cycle is simple

- Historically, CO<sub>2</sub> capture has been expensive, whether using air to combust or oxycombustion
  - Air combustion
    - $\underbrace{\frac{8N_2 + 2O_2}{air} + CH_4}_{2H_2O} \rightarrow \underbrace{\frac{8N_2 + CO_2}{expensive to}}_{separate} + \underbrace{\frac{8N_2 + CO_2}{expensive to}}_{separate} + \underbrace{\frac{8N_2 + 2O_2}{expensive to}}_{separate} + \underbrace{\frac{8N_2 + 2O_2}{expena$
  - Oxy-combustion
    - $20_2 + CH_4 \rightarrow CO_2 + 2H_2O$ expensive to produce
- The Allam Cycle makes oxycombustion economic by:
  - Relying on a more efficient core power cycle
  - Recycling heat within the system to reduce O<sub>2</sub> and CH<sub>4</sub> consumption, and associated costs of the ASU





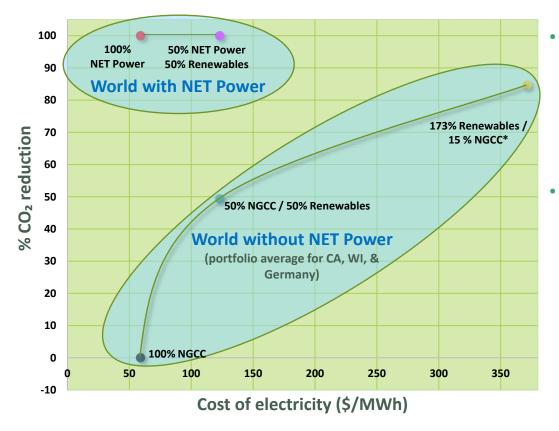

#### **The NET Power Advantage - The Allam Cycle**





#### **NET Power is Based on the Allam Cycle Platform**






### **Drive for NET Power**



#### NET Power eliminates atmospheric CO<sub>2</sub> at no extra cost

#### **Cost of Electricity For Different Reduction Scenarios**



- System level studies consistently show that high levels of renewable penetration (50-80%) result in greater system costs than balanced and "high CCS" scenarios even assuming <u>today's</u> high CCS costs.
- Fossil deployment remains roughly equal compared to reference or balanced scenarios; higher levels of renewable penetration do little to offset need for baseload generation.

Data obtained from: Brick, S., and Thernstrom, S., Renewables and decarbonization: Studies of California, Wisconsin, and Germany, *The Electricity Journal*, **2016**, 29, 6-12.

\*Renewables and storage capacity build-out 173% above total capacity demand, with NGCC still providing consistent baseload support.

Material Confidential and/or Proprietary to 8 Rivers Capital and/or NET Power – Not To Be Disclosed or Republished Without Written Consent



#### **NET Power will**

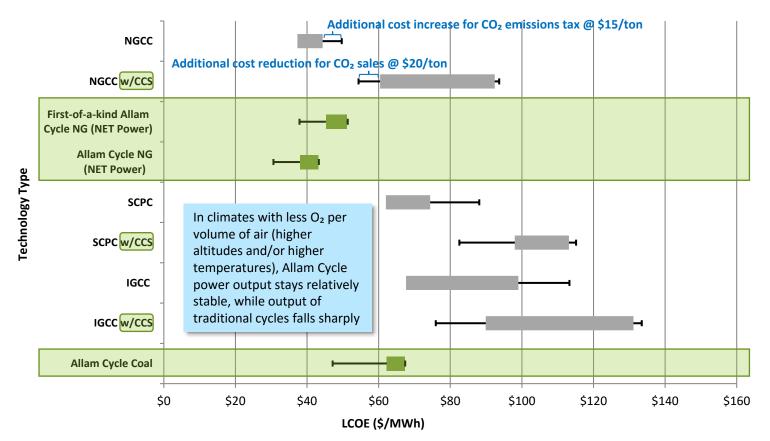
- Allow the world to meet its climate targets
- Without having to pay more for electricity



### **Global CO<sub>2</sub> EOR – Economics**

\$100 Oil Sands Risk Triangle Global CO2-EOR w/ traditional "CCS" \$90 Tight s Existing Oil Supply Curve NA Shale Ultra Deepwater Welkler \$80 Waterflooding Onshore, Rest of World Deepwater COL FOR Low Acquisitions \$70 and, Charanal Energy eakeven Price (USD/bbl) Onshore, Russia \$60 Offshore. Shelf Extra Heavy O \$50 B +75% \$40 Confidence Current View Interval of CCS Based on This CO2-EOR CO2-EOR \$30 Mean (current (post-NP Expensive Breakeven geologic US) geologic US) Price Point Oil Supply Curve After Global Use of NET \$20 -75% Power CO<sub>2</sub> for EOR Confidence Onshore, Global Interval Middle CO2-EOR East w/NP \$10 For oil producers owning a NET Power plant, access to pipeline pressure and quality CO<sub>2</sub> lowers the breakeven cost of producing oil. This unlocks oil in the US and around the globe. \$0 20 100 0 Total 2020 Production (million boe/d)

- Shutdown of tight oil/high cost plays highlights EOR as a low-cost opportunity for growth from existing fields
- NET Power further improves the economics of EOR and will significantly expand CO<sub>2</sub> supplies for producers
- NET Power solves the challenge of carbon capture adoption by achieving lower cost and higher efficiency than current noncarbon capture power generation options

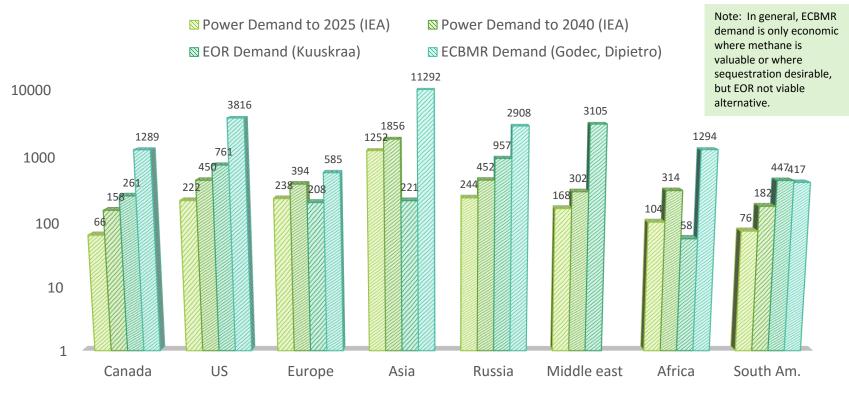

Source: Rystad Energy (2014); 8 Rivers Capital (2015)

120

Sources and Estimated Breakeven of Oil Needed to Meet 2020 Demand



#### **NET Power Economics**



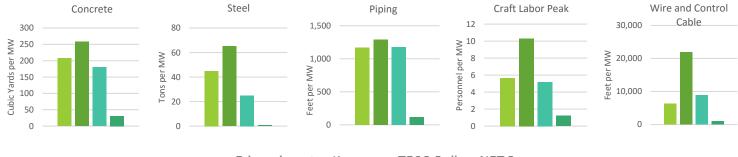

- LCOE calculated using EPRI methodology
- Assumes natural gas at \$2.85/MMBTU and coal at \$1.73/MMBTU
- Every move of \$1 in natural gas moves LCOE \$6
- Cost ranges represent range of data combined from: EIA (2013), Parsons Brinkerhoff (2013); Black & Veatch (2012); DOE NETL (2012)



## Global turbine sales will be driven by power demand and CO<sub>2</sub> demand

#### NUMBER OF NET POWER TURBINES NEEDED TO SATISFY DIFFERENT MARKETS




## NET Power is much simpler (and less expensive) than recent IGCC attempts at CCS

#### • Bulks were a significant driver of cost increases at major IGCC projects:

• Huge quantities required.

**NETPOWER** 

- On-going design changes required further ordering.
- Ordered during a period of rapid price escalation (2005-2008).
- Premium craft rates and on-site training required; scale of plants meant massive number of workers on site, exacerbating cost-impact of project delays.



Edwardsport Kemper TECO Polk NET Power

• NET Power's footprint per MW is ¼ of that needed for IGCC



## The Chemicals Industry and NET Power Integration



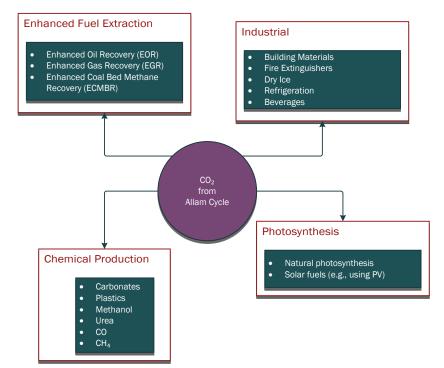
### **CO<sub>2</sub> conversion to value added chemicals**

Availability of CO<sub>2</sub> utilization opportunities not driven by potential uses, but by cost of anthropogenic CO<sub>2</sub>.

#### • NET Power offers CO<sub>2</sub> capture at:

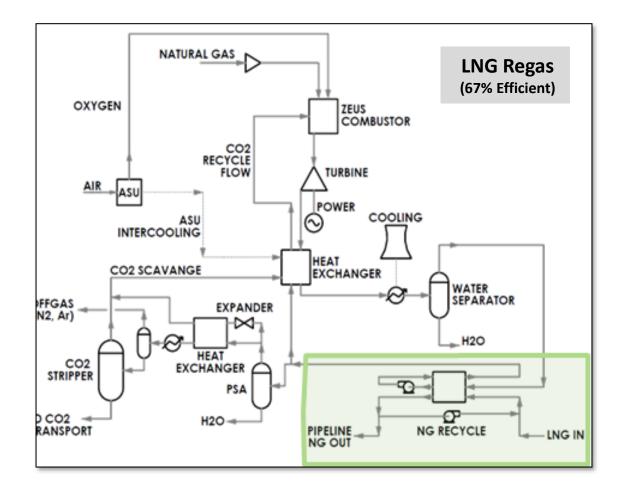
- 1. no extra cost
- 2. high pressure (available from 30 bar/450 psi to 300 bar/4500 psi)
- 3. high purity

#### Providing a usable, affordable by-product to the chemicals industry.




#### NP is more than just power production

- NET Power co-produces gases that are synergistic with chemicals and oil & gas and chemical industries
  - For each turbine train (operating at an estimated 85% capacity factor for power, 98% for ASU)
    - 13.9 million MMBTU per year NG use
    - 800,000 tons per year CO<sub>2</sub> production (at pressure and purity)
    - 4.8 MM tons per year N<sub>2</sub> production
    - 56,965 tons per year Ar production
    - 166,000 tons per year O<sub>2</sub> production (during planned outages for electricity part of plant)
  - Capability of delivering syngas (H<sub>2</sub> and CO)


#### Scalable CO<sub>2</sub> uses

- Additional CO<sub>2</sub> utilization opportunities
  - Building materials
  - Chemical processes
  - Artificial photosynthesis





## Integration increases energy efficiency when integrated with LNG Regas





## Governmental and Environmental Support

## Exceeds regulations of tomorrow, reduces risk today



"NET Power does not make natural gas a bridge—or a pier. It makes it a destination."

-Senior government official

# NET Power's economics enable CCS to be implemented in stages

- NET Power is economically competitive with NGCC even when not capturing CO<sub>2</sub>
  - If CO<sub>2</sub> transportation infrastructure is not available when plant operation commences, CO2 capture can be enabled later in the plant's life

#### While awaiting transportation and storage to be developed:

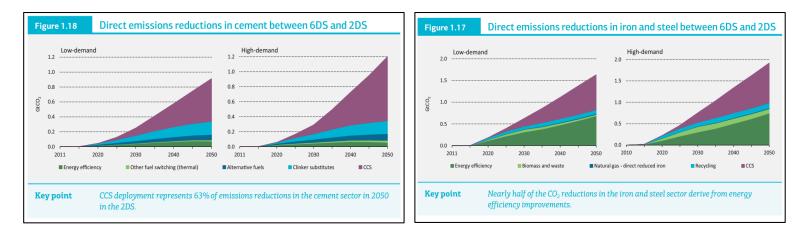
- NET Power plants would vent CO<sub>2</sub>, increasing plant efficiency by 1-2% while remaining competitive with conventional power plants
- The plant would still be cleaner than NGCC: plant emissions would be almost entirely pure CO<sub>2</sub>, with virtually no NOX emissions
- No further investment is required to begin commence CO<sub>2</sub> capture
- This allows deployment of CCS to be implemented in stages
  - Power infrastructure developed today is fully CO<sub>2</sub> capture ready
  - CO<sub>2</sub> transportation, utilization and storage infrastructure can be developed on its heels

ETPOWER



# NET Power is *necessary*, not just helpful, to meeting global climate goals

<u>IPCC Fifth Assessment</u>: CCS is most critical component to models meeting 450 ppm CO2 limit; "no CCS" scenario results in least number of successful models (4) and mitigation **costs that were 138% higher than baseline scenarios**.\*


| Mitigation cost increases in scenarios with<br>limited availability of technologies <sup>d</sup><br>[% increase in total discounted <sup>e</sup> mitigation costs<br>(2015–2100) relative to default technology assumptions] |                         |                       |                     |                                        | Mitigation cost increases<br>due to delayed additional<br>mitigation until 2030<br>[% increase in mitigation costs<br>relative to immediate mitigation] |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|---------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 2100<br>concentrations<br>(ppm CO <sub>2</sub> -eq)                                                                                                                                                                          | no CCS                  | nuclear phase out     | limited solar/wind  | limited bicenergy                      | medium term costs<br>(2030–2050)                                                                                                                        | long term<br>costs<br>(2050–2100) |
| 450<br>(430 to 480)                                                                                                                                                                                                          | 138%<br>(29 to 297%)    | 7%<br>(4 to 18%) 8    | 6%<br>(2 to 29%) 8  | (44 to 78%) 8                          | 44%<br>(2 to 78%) 29                                                                                                                                    | 37%<br>(16 to 82%)                |
| 500<br>(480 to 530)                                                                                                                                                                                                          | not available<br>(n.a.) | n.a.                  | n.a.                | n.a.                                   |                                                                                                                                                         |                                   |
| 550<br>(530 to 580)                                                                                                                                                                                                          | 39%<br>(18 to 78%)      | 13%<br>(2 to 23%)     | 8%<br>(5 to 15%) 10 | 18%<br>(4 to 66%) 12                   | 15%<br>(3 to 32%)                                                                                                                                       | 16%<br>(5 to 24%)                 |
| 580 to 650                                                                                                                                                                                                                   | n.a.                    | n.a.                  | n.a.                | n.a.                                   |                                                                                                                                                         |                                   |
| Symbol legend–                                                                                                                                                                                                               | fraction of models su   | accessful in producin | g scenarios (numbe  | rs indicate the number                 | of successful models)                                                                                                                                   |                                   |
| e all models successful<br>between 80 and 100% of models successful                                                                                                                                                          |                         |                       |                     | etween 50 and 80% of models successful |                                                                                                                                                         |                                   |

21



## Even in the most promising renewable scenarios, the industrial sector must be primarily addressed by CCS

- The IEA views CCS as the only viable solution in the industrial sector
  - In order to meet the 2DS target, 2050 CO<sub>2</sub> emissions from the industrial sector must be reduced to 66% of current levels, while energy use will increase 44% over current levels
  - "Reaching these targets will require...rapid increases in CCS capacity."



• The Allam Cycle addresses these industries.

Images obtained from: IEA Energy Technology Perspectives 2014

October 2016



## **NET Power and CO**<sub>2</sub> Sequestration

#### • Regulatory opportunities and incentives exist that enhance NET Power's economics

- The federal 45Q Tax Credit is applicable to NET Power anywhere it sequesters CO<sub>2</sub> or utilizes it for EOR
- 21 states have incentives and policies in place the provide value or preferential treatment to NET Power for capturing CO<sub>2</sub>

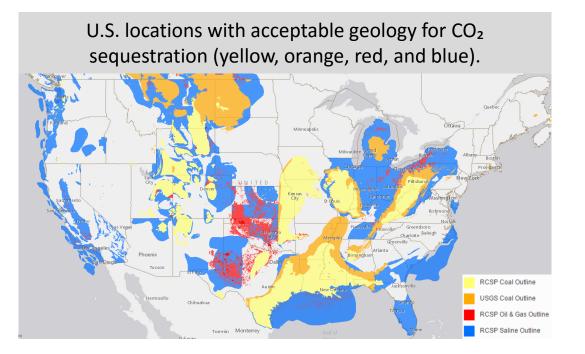



Image obtained from: http://www.natcarbviewer.com/

### EPA Regulations Increase NET Power's Competitive Advantage

- NET Power can help customers comply with the EPA's new Clean Power Plan
  - Under mass-based + new source compliment standard, NET Power enables existing assets to be run longer while meeting CPP targets
  - The plan will likely result in the creation of carbon markets in most (if not all) of the US
  - Potential to be included in Clean Energy Incentive Program (final rule under development)
- New source standards likely to eventually move towards NET Power
  - New EPA standards for new power plants regulate carbon emissions to the lowest limit that can be achieved while remaining economically competitive
  - As efficiencies increase and costs come down, standard likely to be tightened
  - NET Power ensures customers are able to meet any future CO<sub>2</sub> standard
- Elimination of NOx emissions enables siting in Ozone Non-attainment Zones without requiring offsets

**TETPOWER** 

### **NET Power**

+1 (919) 667-1800

www.NETPower.com / www.8Rivers.com